
web-poet Documentation
Release 0.17.0

Zyte Group Ltd

Mar 06, 2024

GETTING STARTED

1 Overview 3

2 Installation 5

3 Tutorial 7

4 From the ground up 15

5 Page objects 21

6 Inputs 25

7 Items 27

8 Rules 29

9 Fields 33

10 Additional requests 45

11 Input validation 49

12 Using page params 51

13 Stats 55

14 Tests for page objects 57

15 Frameworks 63

16 Framework specification 65

17 Supporting rules 67

18 Supporting additional requests 69

19 Supporting Retries 73

20 Supporting stats 75

21 API reference 77

22 Contributing 95

i

23 Changelog 97

24 License 105

Python Module Index 107

Index 109

ii

web-poet Documentation, Release 0.17.0

web-poet is a Python 3.8+ implementation of the page object pattern for web scraping. It enables writing portable,
reusable web parsing code.

Warning: web-poet is in early stages of development; backward-incompatible changes are possible.

GETTING STARTED 1

https://martinfowler.com/bliki/PageObject.html

web-poet Documentation, Release 0.17.0

2 GETTING STARTED

CHAPTER

ONE

OVERVIEW

A good web scraping framework helps to keep your code maintainable by, among other things, enabling and encour-
aging separation of concerns.

For example, Scrapy lets you implement different aspects of web scraping, like ban avoidance or data delivery, into
separate components.

However, there are 2 core aspects of web scraping that can be hard to decouple: crawling, i.e. visiting URLs, and
parsing, i.e. extracting data.

web-poet lets you write data extraction code that:

• Makes your web scraping code easier to maintain, since your data extraction and crawling code are no longer
intertwined and can be maintained separately.

• Can be reused with different versions of your crawling code, i.e. with different crawling strategies.

• Can be executed independently of your crawling code, enabling easier debugging and easier automated testing.

• Can be used with any Python web scraping framework or library that implements the web-poet specification,
either directly or through a third-party plugin. See Frameworks.

To learn more about why and how web-poet came to be, see From the ground up.

3

https://en.wikipedia.org/wiki/Separation_of_concerns
https://scrapy.org/

web-poet Documentation, Release 0.17.0

4 Chapter 1. Overview

CHAPTER

TWO

INSTALLATION

To be able to write page objects and test them, install web-poet from PyPI:

pip install web-poet

To use page objects in production, however, you will need a web-poet framework.

5

https://pypi.org/project/web-poet/

web-poet Documentation, Release 0.17.0

6 Chapter 2. Installation

CHAPTER

THREE

TUTORIAL

In this tutorial you will learn to use web-poet as you write web scraping code for book detail pages from
books.toscrape.com.

To follow this tutorial you must first be familiar with Python and have installed web-poet.

3.1 Create a project directory

web-poet does not limit how you structure your web-poet web scraping code, beyond the limitations of Python itself.

However, in this tutorial you will use a specific project directory structure designed with web-poet best practices in
mind. Consider using a similar project directory structure in all your web-poet projects.

First create your project directory: tutorial-project/.

Within the tutorial-project directory, create:

• A run.py file, a file specific to this tutorial where you will put code to test the execution of your web scraping
code.

• A tutorial directory, where you will place your web scraping code.

Within the tutorial-project/tutorial directory, create:

• An __init__.py file, so that the tutorial directory becomes an importable Python module.

• An items.py file, where you will define item classes to store extracted data.

• A pages directory, where you will define your page object classes.

Within the tutorial-project/tutorial/pages directory, create:

• An __init__.py file.

• A books_toscrape_com.py file, for page object class code targeting books.toscrape.com.

Your project directory should look as follows:

tutorial-project
run.py
tutorial

__init__.py
items.py
pages

__init__.py
books_toscrape_com.py

7

http://books.toscrape.com/
https://docs.python.org/
http://books.toscrape.com/

web-poet Documentation, Release 0.17.0

3.2 Create an item class

While it is possible to store the extracted data in a Python dictionary, it is a good practice to create an item class that:

• Defines the specific attributes that you aim to extract, triggering an exception if you extract unintended attributes
or fail to extract expected attributes.

• Allows defining default values for some attributes.

web-poet uses itemadapter for item class support, which means that any kind of item class can be used. In this tutorial,
you will use attrs to define your item class.

Copy the following code into tutorial-project/tutorial/items.py:

from attrs import define

@define
class Book:

title: str

This code defines a Book item class, with a single required title string attribute to store the book title.

Book is a minimal class designed specifically for this tutorial. In real web-poet projects, you will usually define item
classes with many more attributes.

Tip: For an example of real item classes, see the zyte-common-items library.

Also mind that, while in this tutorial you use Book only for data from 1 website, books.toscrape.com, item classes are
usually meant to be usable for many different websites that provide data with a similar data schema.

3.3 Create a page object class

To write web parsing code with web-poet, you write page object classes, Python classes that define how to extract data
from a given type of input, usually some type of webpage from a specific website.

In this tutorial you will write a page object class for webpages of books.toscrape.com that show details about a book,
such as these:

• http://books.toscrape.com/catalogue/the-exiled_247/index.html

• http://books.toscrape.com/catalogue/when-we-collided_955/index.html

• http://books.toscrape.com/catalogue/set-me-free_988/index.html

Copy the following code into tutorial-project/tutorial/pages/books_toscrape_com.py:

from web_poet import field, handle_urls, WebPage

from ..items import Book

@handle_urls("books.toscrape.com")
class BookPage(WebPage[Book]):

(continues on next page)

8 Chapter 3. Tutorial

https://github.com/scrapy/itemadapter
https://www.attrs.org/en/stable/
https://zyte-common-items.readthedocs.io/en/latest/
http://books.toscrape.com/
http://books.toscrape.com/
http://books.toscrape.com/catalogue/the-exiled_247/index.html
http://books.toscrape.com/catalogue/when-we-collided_955/index.html
http://books.toscrape.com/catalogue/set-me-free_988/index.html

web-poet Documentation, Release 0.17.0

(continued from previous page)

@field
async def title(self):

return self.css("h1::text").get()

In the code above:

• You define a page object class named BookPage by subclassing WebPage.

It is possible to create a page object class subclassing instead the simpler ItemPage class. However, WebPage:

– Indicates that your page object class requires an HTTP response as input, which gets stored in the response
attribute of your page object class as an HttpResponse object.

– Provides attributes like html and url, and methods like css(), urljoin(), and xpath(), that make it
easier to write parsing code.

• BookPage declares Book as its return type.

WebPage, like its parent class ItemPage, is a generic class that accepts a type parameter. Unlike most generic
classes, however, the specified type parameter is used for more than type hinting: it determines the item class
that is used to store the data that fields return.

• BookPage is decorated with handle_urls(), which indicates for which domain BookPage is intended to work.

It is possible to specify more specific URL patterns, instead of only the target URL domain. However, the URL
domain and the output type (Book) are usually all the data needed to determine which page object class to use,
which is the goal of the handle_urls() decorator.

• BookPage defines a field named title.

Fields are methods of page object classes, preferably async methods, decorated with field(). Fields define the
logic to extract a specific piece of information from the input of your page object class.

BookPage.title extracts the title of a book from a book details webpage. Specifically, it extracts the text from
the first h1 element on the input HTTP response.

Here, title is not an arbitrary name. It was chosen specifically to match Book.title, so that during parsing
the value that BookPage.title returns gets mapped to Book.title.

3.4 Use your page object class

Now that you have a page object class defined, it is time to use it.

First, install requests, which is required by web_poet.example.

Then copy the following code into tutorial-project/run.py:

from web_poet import consume_modules
from web_poet.example import get_item

from tutorial.items import Book

consume_modules("tutorial.pages")

item = get_item(
"http://books.toscrape.com/catalogue/the-exiled_247/index.html",
Book,

(continues on next page)

3.4. Use your page object class 9

https://docs.python.org/3/library/typing.html#generics
https://requests.readthedocs.io/en/latest/user/install/

web-poet Documentation, Release 0.17.0

(continued from previous page)

)
print(item)

Execute that code:

python tutorial-project/run.py

And the print(item) statement should output the following:

Book(title='The Exiled')

In this tutorial you use web_poet.example.get_item, which is a simple, incomplete implementation of the web-
poet specification, built specifically for this tutorial, for demonstration purposes. In real projects, use instead an actual
web-poet framework.

web_poet.example.get_item serves to illustrate the power of web-poet: once you have defined your page object
class, a web-poet framework only needs 2 inputs from you:

• the URL from which you want to extract data, and

• the desired output, either a page object class or, in this case, an item class.

Notice that you must also call consume_modules() once before your first call to get_item. consume_modules
ensures that the specified Python modules are loaded. You pass consume_modules the import paths of the modules
where your page object classes are defined. After loading those modules, handle_urls() decorators register the page
object classes that they decorate into web_poet.default_registry, which get_item uses to determine which page
object class to use based on its input parameters (URL and item class).

Your web-poet framework can take care of everything else:

1. It matches the input URL and item class to BookPage, based on the URL pattern that you defined with the
handle_urls() decorator, and the return type that you declared in the page object class (Book).

2. It inspects the inputs declared by BookPage, and builds an instance of BookPage with the required inputs.

BookPage is a WebPage subclass, and WebPage declares an attribute named response of type HttpResponse.
Your web-poet framework sees this, and creates an HttpResponse object from the input URL as a result, by
downloading the URL response, and assigns that object to the response attribute of a new BookPage object.

3. It builds the output item, Book(title='The Exiled'), using the to_item()method of BookPage, inherited
from ItemPage, which in turn uses all fields of BookPage to create an instance of Book, which you declared as
the return type of BookPage.

3.5 Extend and override your code

To continue this tutorial, you will need extended versions of Book and BookPage, with additional fields. However,
rather than editing the existing Book and BookPage classes, you will see how you can instead create new classes that
inherit them.

Append the following code to tutorial-project/tutorial/items.py:

from typing import Optional

@define
class CategorizedBook(Book):

(continues on next page)

10 Chapter 3. Tutorial

web-poet Documentation, Release 0.17.0

(continued from previous page)

category: str
category_rank: Optional[int] = None

The code above defines a new item class, CategorizedBook, that inherits the title attribute from Book and defines
2 more attributes: category and category_rank.

Append the following code to tutorial-project/tutorial/pages/books_toscrape_com.py:

from web_poet import Returns

from ..items import CategorizedBook

@handle_urls("books.toscrape.com")
class CategorizedBookPage(BookPage, Returns[CategorizedBook]):

@field
async def category(self):

return self.css(".breadcrumb a::text").getall()[-1]

In the code above:

• You define a new page object class: CategorizedBookPage.

• CategorizedBookPage subclasses BookPage, inheriting its title field, and defining a new one: category.

CategorizedBookPage does not define a category_rank field yet, you will add it later on. For now, the
default value defined in CategorizedBook for category_rank will be None.

• CategorizedBookPage indicates that it returns a CategorizedBook object.

WebPage is a generic class, which is why we could use WebPage[Book] in the definition of BookPage to in-
dicate Book as the output type of BookPage. However, BookPage is not a generic class, so something like
BookPage[CategorizedBook] would not work.

So instead you use Returns, a special, generic class that you can inherit to re-define the output type of your page
object subclasses.

After you update your tutorial-project/run.py script to request a CategorizedBook item:

from web_poet import consume_modules
from web_poet.example import get_item

from tutorial.items import CategorizedBook

consume_modules("tutorial.pages")

item = get_item(
"http://books.toscrape.com/catalogue/the-exiled_247/index.html",
CategorizedBook,

)
print(item)

And you execute it again:

python tutorial-project/run.py

3.5. Extend and override your code 11

https://docs.python.org/3/library/typing.html#generics

web-poet Documentation, Release 0.17.0

You can see in the new output that your new classes have been used:

CategorizedBook(title='The Exiled', category='Mystery', category_rank=None)

3.6 Use additional requests

To extract data about an item, sometimes the HTTP response to a single URL is not enough. Sometimes, you need
additional HTTP responses to get all the data that you want. That is the case with the category_rank attribute.

The category_rank attribute indicates the position in which a book appears in the list of books of the category of
that book. For example, The Exiled is 24th in the Mystery category, so the value of category_rank should be 24 for
that book.

However, there is no indication of this value in the book details page. To get this value, you need to visit the URL of the
category of the book whose data you are extracting, find the entry of that book within the grid of books of the category,
and record in which position you found it. And categories with more than 20 books are split into multiple pages, so
you may need more than 1 additional request for some books.

Extend CategorizedBookPage in tutorial-project/tutorial/pages/books_toscrape_com.py as follows:

from attrs import define

from web_poet import HttpClient, Returns

from ..items import CategorizedBook

@handle_urls("books.toscrape.com")
@define
class CategorizedBookPage(BookPage, Returns[CategorizedBook]):

http: HttpClient
_books_per_page = 20

@field
async def category(self):

return self.css(".breadcrumb a::text").getall()[-1]

@field
async def category_rank(self):

response, book_url, page = self.response, self.url, 0
category_page_url = self.css(".breadcrumb a::attr(href)").getall()[-1]
while category_page_url:

category_page_url = response.urljoin(category_page_url)
response = await self.http.get(category_page_url)
urls = response.css("h3 a::attr(href)").getall()
for position, url in enumerate(urls, start=1):

url = str(response.urljoin(url))
if url == book_url:

return page * self._books_per_page + position
category_page_url = response.css(".next a::attr(href)").get()
if not category_page_url:

return None
page += 1

12 Chapter 3. Tutorial

http://books.toscrape.com/catalogue/the-exiled_247/index.html
https://books.toscrape.com/catalogue/category/books/mystery_3/

web-poet Documentation, Release 0.17.0

In the code above:

• You declare a new input in CategorizedBookPage, http, of type HttpClient.

You also add the @attrs.define decorator to CategorizedBookPage, as it is required when adding new
required attributes to subclasses of attrs classes.

• You define the category_rank field so that it uses the http input object to send additional requests to find the
position of the current book within its category.

Specifically:

1. You extract the category URL from the book details page.

2. You visit that category URL, and you iterate over the listed books until you find one with the same URL as
the current book.

If you find a match, you return the position at which you found the book.

3. If there is no match, and there is a next page, you repeat the previous step with the URL of that next page
as the category URL.

4. If at some point there are no more “next” pages and you have not yet found the book, you return None.

When you execute tutorial-project/run.py now, category_rank has the expected value:

CategorizedBook(title='The Exiled', category='Mystery', category_rank=24)

3.7 Use parameters

You may notice that the execution takes longer now. That is because CategorizedBookPage now requires 2 or more
requests, to find the value of the category_rank attribute.

If you use CategorizedBookPage as part of a web scraping project that targets a single book URL, it cannot be
helped. If you want to extract the category_rank attribute, you need those additional requests. Your only option to
avoid additional requests is to stop extracting the category_rank attribute.

However, if your web scraping project is targeting all book URLs from one or more categories by visiting those category
URLs, extracting book URLs from them, and then using CategorizedBookPagewith those book URLs as input, there
is something you can change to save many requests: keep track of the positions where you find books as you visit their
categories, and pass that position to CategorizedBookPage as additional input.

Extend CategorizedBookPage in tutorial-project/tutorial/pages/books_toscrape_com.py as follows:

from attrs import define

from web_poet import HttpClient, PageParams, Returns

from ..items import CategorizedBook

@handle_urls("books.toscrape.com")
@define
class CategorizedBookPage(BookPage, Returns[CategorizedBook]):

http: HttpClient
page_params: PageParams
_books_per_page = 20

(continues on next page)

3.7. Use parameters 13

https://www.attrs.org/en/stable/

web-poet Documentation, Release 0.17.0

(continued from previous page)

@field
async def category(self):

return self.css(".breadcrumb a::text").getall()[-1]

@field
async def category_rank(self):

category_rank = self.page_params.get("category_rank")
if category_rank is not None:

return category_rank
response, book_url, page = self.response, self.url, 0
category_page_url = self.css(".breadcrumb a::attr(href)").getall()[-1]
while category_page_url:

category_page_url = response.urljoin(category_page_url)
response = await self.http.get(category_page_url)
urls = response.css("h3 a::attr(href)").getall()
for position, url in enumerate(urls, start=1):

url = str(response.urljoin(url))
if url == book_url:

return page * self._books_per_page + position
category_page_url = response.css(".next a::attr(href)").get()
if not category_page_url:

return None
page += 1

In the code above, you declare a new input in CategorizedBookPage, page_params, of type PageParams. It is a
dictionary of parameters that you may receive from the code using your page object class.

In the category_rank field, you check if you have received a parameter also called category_rank, and if so, you
return that value instead of using additional requests to find the value.

You can now update your tutorial-project/run.py script to pass that parameter to get_item:

item = get_item(
"http://books.toscrape.com/catalogue/the-exiled_247/index.html",
CategorizedBook,
page_params={"category_rank": 24},

)

When you execute tutorial-project/run.py now, execution should take less time, but the result should be the
same as before:

CategorizedBook(title='The Exiled', category='Mystery', category_rank=24)

Only that now the value of category_rank comes from tutorial-project/run.py, and not from additional re-
quests sent by CategorizedBookPage.

14 Chapter 3. Tutorial

CHAPTER

FOUR

FROM THE GROUND UP

Learn why and how web-poet came to be as you transform a simple, rigid starting web scraping code snippet into
maintainable, reusable web-poet code.

4.1 Writing reusable parsing code

Imagine you are writing code to scrape a book web page from books.toscrape.com, and you implement a scrape
function like this:

import requests
from parsel import Selector

def scrape(url: str) -> dict:
response = requests.get(url)
selector = Selector(response.text)
return {

"url": response.url,
"title": selector.css("h1").get(),

}

item = scrape("http://books.toscrape.com/catalogue/a-light-in-the-attic_1000/index.html")

This scrape function is simple, but it has a big issue: it only supports downloading the specified URL using the
requests library. What if you want to use aiohttp, for concurrency support? What if you want to run scrape with a
local snapshot of a URL response, to write an automated test for scrape that does not rely on a network connection?

The first step towards addressing this issue is to split your scrape function into 2 separate functions, download and
parse:

import requests
from parsel import Selector

def parse(response: requests.Response) -> dict:
selector = Selector(response.text)
return {

"url": response.url,
"title": selector.css("h1").get(),

}
(continues on next page)

15

http://books.toscrape.com/
https://requests.readthedocs.io/en/latest/
https://github.com/aio-libs/aiohttp

web-poet Documentation, Release 0.17.0

(continued from previous page)

def download(url: str) -> requests.Response:
return requests.get(url)

url = "http://books.toscrape.com/catalogue/a-light-in-the-attic_1000/index.html"
response = download(url)
item = parse(response)

Now that download and parse are separate functions, you can replace download with an alternative implementation
that uses aiohttp, or that reads from local files.

There is still an issue, though: parse expects an instance of requests.Response. Any alternative implementation of
downloadwould need to create a response object of the same type, forcing a dependency on requests even if downloads
are handled with a different library.

So you need to change the input of the parse function into something that will not tie you to a specific download
library. One option is to create your own, download-independent Response class, to store the response data that any
download function should be able to provide:

import requests
from dataclasses import dataclass
from parsel import Selector

@dataclass
class Response:

url: str
text: str

def parse(response: Response) -> dict:
selector = Selector(response.text)
return {

"url": response.url,
"title": selector.css("h1").get(),

}

def download(url: str) -> Response:
response = requests.get(url)
return Response(url=response.url, text=response.text)

url = "http://books.toscrape.com/catalogue/a-light-in-the-attic_1000/index.html"
response = download(url)
item = parse(response)

The parse function is no longer tied to any specific download library, and alternative versions of the download function
can be implemented with other libraries.

16 Chapter 4. From the ground up

https://github.com/aio-libs/aiohttp
https://requests.readthedocs.io/en/latest/api/#requests.Response
https://requests.readthedocs.io/en/latest/

web-poet Documentation, Release 0.17.0

4.2 Parsing with web-poet

web-poet asks you to organize your code in a very similar way. Let’s convert the parse function into a web-poet page
object class:

import requests
from web_poet import Injectable, HttpResponse

class BookPage(Injectable):
def __init__(self, response: HttpResponse):

self.response = response

def to_item(self) -> dict:
return {

"url": self.response.url,
"title": self.response.css("h1").get(),

}

def download(url: str) -> Response:
response = requests.get(url)
return HttpResponse(

url=response.url,
body=response.content,
headers=response.headers,

)

url = "http://books.toscrape.com/catalogue/a-light-in-the-attic_1000/index.html"
response = download(url)
book_page = BookPage(response=response)
item = book_page.to_item()

Differences from a previous example:

• web-poet provides a standard HttpResponse class, with helper methods like css().

Note how headers are passed when creating an HttpResponse instance. This is needed to properly decode the
body (which is bytes) as text using web browser rules. It involves checking the Content-Encoding header,
HTML meta tags, BOM markers in the body, etc.

• Instead of the parse function we’ve got a BookPage class, which inherits from the Injectable base class, re-
ceives response data in its __init__method, and returns the extracted item in the to_item()method. to_item
is a standard method name used by web-poet.

Receiving a response argument in __init__ is very common for page objects, so web-poet provides a shortcut for it:
inherit from WebPage, which provides this __init__ method implementation. You can then refactor your BookPage
class as follows:

from web_poet import WebPage

class BookPage(WebPage):
def to_item(self) -> dict:

return {
(continues on next page)

4.2. Parsing with web-poet 17

web-poet Documentation, Release 0.17.0

(continued from previous page)

"url": self.response.url,
"title": self.response.css("h1").get(),

}

WebPage even provides shortcuts for some response attributes and methods:

from web_poet import WebPage

class BookPage(WebPage):
def to_item(self) -> dict:

return {
"url": self.url,
"title": self.css("h1").get(),

}

At this point you may be wondering why web-poet requires you to write a class with a to_item method rather than a
function. The answer is flexibility.

For example, the use of a class instead of a function makes fields possible, which make parsing code easier to read:

from web_poet import WebPage, field

class BookPage(WebPage):
@field
def url(self):

return self.url

@field
def title(self):

return self.css("h1").get()

Using fields also makes it unnecessary to define to_item() manually, and allows reading individual fields when you
don’t need the complete to_item() output.

Note: The BookPage.to_item() method is async in the example above. See Fields for more information.

Using classes also makes it easy, for example, to implement dependency injection, which is how web-poet builds inputs.

4.3 Downloading with web-poet

What about the implementation of the download function? How would you implement that in web-poet? Well, ideally,
you wouldn’t.

To parse data from a web page using web-poet, you would only need to write the parsing part, e.g. the BookPage page
object class above.

Then, you let a web-poet framework handle the download part for you. You pass that framework the URL of a web
page to parse, and either a page object class (the BookPage class here) or an item class, and that’s it:

item = some_framework.get(url, BookPage)

18 Chapter 4. From the ground up

web-poet Documentation, Release 0.17.0

web-poet does not provide any framework, beyond an example one featured in the tutorial and not intended for pro-
duction. The role of web-poet is to define a specification on how to write parsing logic so that it can be reused with
different frameworks.

Page object classes should be flexible enough to be used with very different frameworks, including:

• synchronous or asynchronous frameworks

• asynchronous frameworks based on callbacks or based on coroutines (async def / await syntax)

• single-node and distributed systems

• different underlying HTTP implementations, or even implementations with no HTTP support at all

4.3. Downloading with web-poet 19

https://docs.python.org/3/library/asyncio-task.html

web-poet Documentation, Release 0.17.0

20 Chapter 4. From the ground up

CHAPTER

FIVE

PAGE OBJECTS

A page object is a code wrapper for a webpage, or for a part of a webpage, that implements the logic to parse the raw
webpage data into structured data.

To use web-poet, define page object classes for your target websites, and get the output item using a web-poet framework.

5.1 Defining a page object class

A page object class is a Python class that:

• Subclasses ItemPage.

• Declares typed input parameters in its __init__ method.

• Uses fields.

Alternatively, you can implement a to_item method, which can be synchronous or asynchronous, and returns
the webpage content as an item.

For example:

from web_poet import HttpResponse, ItemPage, field

class FooPage(ItemPage[MyItem]):
def __init__(self, response: HttpResponse):

self.response = response

@field
def foo(self) -> str:

return self.response.css(".foo").get()

Note: MyItem in the code examples of this page is a placeholder for an item class.

21

web-poet Documentation, Release 0.17.0

5.1.1 Minimizing boilerplate

There are a few ways for you to minimize boilerplate when defining a page object class.

For example, you can use attrs to remove the need for a custom __init__ method:

from attrs import define

from web_poet import HttpResponse, ItemPage, field

@define
class FooPage(ItemPage[MyItem]):

response: HttpResponse

@field
def foo(self) -> str:

return self.response.css(".foo").get()

If your page object class needs HttpResponse as input, there is also WebPage, an ItemPage subclass that declares an
HttpResponse input and provides helper methods to use it:

from web_poet import WebPage, field

class FooPage(WebPage[MyItem]):
@field
def foo(self) -> str:

return self.css(".foo").get()

5.2 Getting the output item

You should include your page object classes into a page object registry, e.g. decorate them with handle_urls():

from web_poet import WebPage, field, handle_urls

@handle_urls("example.com")
class FooPage(WebPage[MyItem]):

@field
def foo(self) -> str:

return self.css(".foo").get()

Then, provided your page object class code is imported (see consume_modules()), your framework can build the
output item after you provide the target URL and the desired output item class, as shown in the tutorial.

Your framework chooses the right page object class based on your input parameters, downloads the required data, builds
a page object, and calls the to_item method of that page object.

Note that, while the examples above use dict as an output item for simplicity, using less generic item classes is
recommended. That way, you can use different page object classes, with different output items, for the same website.

22 Chapter 5. Page objects

https://www.attrs.org/en/stable/index.html
https://docs.python.org/3/library/stdtypes.html#dict

web-poet Documentation, Release 0.17.0

5.2.1 Getting a page object

Alternatively, frameworks can return a page object instead of an item, and you can call to_item yourself.

However, there are drawbacks to this approach:

• to_item can be synchronous or asynchronous, so you need to use ensure_awaitable():

from web_poet.utils import ensure_awaitable

item = await ensure_awaitable(foo_page.to_item())

• to_itemmay raise certain exceptions, like Retry or UseFallback , which, depending on your framework, may
not be handled automatically when getting a page object instead of an item.

5.2.2 Building a page object manually

It is possible to create a page object from a page object class passing its inputs as parameters. For example, to manually
create an instance of the FooPage page object class defined above:

foo_page = FooPage(
response=HttpResponse(

"https://example.com",
b"<!DOCTYPE html>\n<title>Foo</title>",

),
)

However, your code will break if the page object class changes its inputs. Building page objects using frameworks
prevents that.

5.2. Getting the output item 23

web-poet Documentation, Release 0.17.0

24 Chapter 5. Page objects

CHAPTER

SIX

INPUTS

Page object classes, in their __init__ method, must define input parameters with type hints pointing to input classes.

Those input classes may be:

• Built-in web-poet input classes.

• Custom input classes.

• Other page object classes.

• Item classes, when using a framework that can provide item classes.

• Any other class that subclasses Injectable or is registered or decorated with Injectable.register.

Based on the target URL and parameter type hints, frameworks automatically build the required objects at run time,
and pass them to the __init__ method of the corresponding page object class.

For example, if a page object class has an __init__ parameter of type HttpResponse, and the target URL is https:
//example.com, your framework would send an HTTP request to https://example.com, download the response, build an
HttpResponse object with the response data, and pass it to the __init__method of the page object class being used.

6.1 Built-in input classes

Warning: Not all frameworks support all web-poet built-in input classes.

The web_poet.page_inputs module defines multiple classes that you can define as inputs for a page object class,
including:

• HttpResponse, a complete HTTP response, including URL, headers, and body. This is the most common input
for a page object class. See Working with HttpResponse.

• HttpClient, to send additional requests.

• RequestUrl, the target URL before following redirects. Useful, for example, to skip the target URL download,
and instead use HttpClient to send a custom request based on parts of the target URL.

• PageParams, to receive data from the crawling code.

• Stats, to write key-value data pairs during parsing that you can inspect later, e.g. for debugging purposes.

• BrowserResponse, which includes URL, status code and BrowserHtml of a rendered web page.

• AnyResponse, which either holds BrowserResponse or HttpResponse as the .response instance, depending
on which one is available or is more appropriate.

25

https://docs.python.org/3/library/abc.html#abc.ABCMeta.register
https://example.com
https://example.com
https://example.com

web-poet Documentation, Release 0.17.0

6.2 Working with HttpResponse

HttpResponse has many attributes and methods.

To get the entire response body, you can use body for the raw bytes, text for the str (decoded with the detected
encoding), or json() to load a JSON response as a Python data structure:

>>> response.body
b'{"foo": "bar"}'
>>> response.text
'{"foo": "bar"}'
>>> response.json()
{'foo': 'bar'}

There are also methods to select content from responses: jmespath() for JSON and css() and xpath() for HTML
and XML:

>>> response.jmespath("foo")
[<Selector query='foo' data='bar'>]
>>> response.css("h1::text")
[<Selector query='descendant-or-self::h1/text()' data='Title'>]
>>> response.xpath("//h1/text()")
[<Selector query='//h1/text()' data='Title'>]

6.3 Custom input classes

You may define your own input classes if you are using a framework that supports it.

However, note that custom input classes may make your page object classes less portable across frameworks.

26 Chapter 6. Inputs

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str

CHAPTER

SEVEN

ITEMS

The to_item method of a page object class must return an item.

An item is a data container object supported by the itemadapter library, such as a dict, an attrs class, or a dataclass()
class. For example:

@attrs.define
class MyItem:

foo: int
bar: str

Because itemadapter allows implementing support for arbitrary classes, any kind of Python object can potentially work
as an item.

7.1 Defining the item class of a page object class

When inheriting from ItemPage, indicate the item class to return between brackets:

@attrs.define
class MyPage(ItemPage[MyItem]):

...

to_item builds an instance of the specified item class based on the page object class fields.

page = MyPage(...)
item = await page.to_item()
assert isinstance(item, MyItem)

You can also define ItemPage subclasses that are not meant to be used, only subclassed, and not annotate ItemPage
in them. You can then annotate those classes when subclassing them:

@attrs.define
class MyBasePage(ItemPage):

...

@attrs.define
class MyPage(MyBasePage[MyItem]):

...

To change the item class of a subclass that has already defined its item class, use Returns:

27

https://github.com/scrapy/itemadapter
https://docs.python.org/3/library/stdtypes.html#dict
https://www.attrs.org/en/stable/
https://docs.python.org/3/library/dataclasses.html#dataclasses.dataclass
https://github.com/scrapy/itemadapter

web-poet Documentation, Release 0.17.0

@attrs.define
class MyOtherPage(MyPage, Returns[MyOtherItem]):

...

7.2 Best practices for item classes

To keep your code maintainable, we recommend you to:

• Instead of dict, use proper item classes based on dataclasses or attrs, to make it easier to detect issues like
field name typos or missing required fields.

• Reuse item classes.

For example, if you want to extract product details data from 2 e-commerce websites, try to use the same item
class for both of them. Or at least try to define a base item class with shared fields, and only keep website-specific
fields in website-specific items.

• Keep item classes as logic-free as possible.

For example, any parsing and field cleanup logic is better handled through page object classes, e.g. using field
processors.

Having code that makes item field values different from their counterpart page object field values can subvert the
expectations of users of your code, which might need to access page object fields directly, for example for field
subset selection.

If you are looking for ready-made item classes, check out zyte-common-items.

28 Chapter 7. Items

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/dataclasses.html#module-dataclasses
https://www.attrs.org/en/stable/index.html
https://zyte-common-items.readthedocs.io/en/latest/index.html

CHAPTER

EIGHT

RULES

Rules are ApplyRule objects that tell web-poet which page object class to use based on user input, i.e. the target URL
and the requested output class (a page object class or an item class).

Rules are necessary if you want to request an item instance, because rules tell web-poet which page object class to
use to generate your item instance. Rules can also be useful as documentation or to get information about page object
classes programmatically.

Rule precedence can also be useful. For example, to implement generic page object classes that you can override for
specific websites.

8.1 Defining rules

The handle_urls() decorator is the simplest way to define a rule for a page object. For example:

from web_poet import ItemPage, handle_urls

from my_items import MyItem

@handle_urls("example.com")
class MyPage(ItemPage[MyItem]):

...

The code above tells web-poet to use the MyPage page object class when given a URL pointing to the example.com
domain name and being asked for MyPage or MyItem as output class.

Alternatively, you can manually create and register ApplyRule objects:

from url_matcher import Patterns
from web_poet import ApplyRule, ItemPage, default_registry

from my_items import MyItem

class MyPage(ItemPage[MyItem]):
...

rule = ApplyRule(
for_patterns=Patterns(include=['example.com']),
use=MyPage,
to_return=MyItem,

)
default_registry.add_rule(rule)

29

web-poet Documentation, Release 0.17.0

8.1.1 URL patterns

Every rule defines a url_matcher.Patterns object that determines if any given URL is a match for the rule.

Patterns objects offer a simple but powerful syntax for URL matching. For example:

Pattern Behavior
(empty string) Matches any URL
example.com Matches any URL on the example.com domain and subdomains
example.com/products/ Matches example.com URLs under the /products/ path
example.com?productId=* Matches example.com URLs with productId=. . . in their query string

For details and more examples, see the url-matcher documentation.

When using the handle_urls() decorator, its include, exclude, and priority parameters are used to create a
Patterns object. When creating an ApplyRule object manually, you must create a Patterns object yourself and
pass it to the for_patterns parameter of ApplyRule.

8.1.2 Rule precedence

Often you define rules so that a given user input, i.e. a combination of a target URL and an output class, can only match
1 rule. However, there are scenarios where it can be useful to define 2 or more rules that can all match a given user
input.

For example, you might want to define a “generic” page object class with some default implementation of field extrac-
tion, e.g. based on semantic markup or machine learning, and be able to override it based on the input URL, e.g. for
specific websites or URL patterns, with a more specific page object class.

For a given user input, when 2 or more rules are a match, web-poet breaks the tie as follows:

• One rule can indicate that its page object class overrides another page object class.

This is specified by ApplyRule.instead_of. When using the handle_urls() decorator, the value comes
from the instead_of parameter of the decorator.

For example, the following page object class would override MyPage from above:

@handle_urls("example.com", instead_of=MyPage)
class OverridingPage(ItemPage[MyItem]):

...

That is:

– If the requested output class is MyPage, an instance of OverridingPage is returned instead.

– If the requested output class is MyItem, an instance of OverridingPage is created, and used to build an
instance of MyItem, which is returned.

• One rule can declare a higher priority than another rule, taking precedence.

Rule priority is determined by the value of ApplyRule.for_patterns.priority. When using the
handle_urls() decorator, the value comes from the priority parameter of the decorator. Rule priority is
500 by default.

For example, given the following page object class:

30 Chapter 8. Rules

https://url-matcher.readthedocs.io/en/latest/api_reference.html#url_matcher.Patterns
https://url-matcher.readthedocs.io/en/latest/api_reference.html#url_matcher.Patterns
https://url-matcher.readthedocs.io/en/latest/intro.html#intro
https://url-matcher.readthedocs.io/en/latest/api_reference.html#url_matcher.Patterns
https://url-matcher.readthedocs.io/en/latest/api_reference.html#url_matcher.Patterns
https://url-matcher.readthedocs.io/en/latest/api_reference.html#url_matcher.Patterns.priority

web-poet Documentation, Release 0.17.0

@handle_urls("example.com", priority=510)
class PriorityPage(ItemPage[MyItem]):

...

The following would happen:

– If the requested output class is MyItem, an instance of PriorityPage is created, and used to build an
instance of MyItem, which is returned.

– If the requested output class is MyPage, an instance of MyPage is returned, since PriorityPage is not
defined as an override for MyPage.

instead_of triumphs priority: If a rule overrides another rule using instead_of, it does not matter if the over-
ridden rule had a higher priority.

When multiple rules override the same page object class, through, priority can break the tie.

If none of those tie breakers are in place, the first rule added to the registry takes precedence. However, relying on
registration order is discouraged, and you will get a warning if you register 2 or more rules with the same URL patterns,
same output item class, same priority, and no instead_of value. See also Rule conflicts.

8.2 Rule registries

Rules should be stored in a RulesRegistry object.

web-poet defines a default, global RulesRegistry object at web_poet.default_registry. Rules defined with the
handle_urls() decorator are added to this registry.

8.2.1 Loading rules

For a framework to apply your rules, you need to make sure that your code that adds those rules to web_poet.
default_registry is executed.

When using the handle_urls() decorator, that usually means that you need to make sure that Python imports the files
where the decorator is used.

You can use the consume_modules() function in some entry point of your code for that:

from web_poet import consume_modules

consume_modules("my_package.pages", "external_package.pages")

The ideal location for this function depends on your framework. Check the documentation of your framework for more
information.

8.2. Rule registries 31

web-poet Documentation, Release 0.17.0

8.3 Rule conflicts

A rule conflict occurs when multiple rules have the same instead_of and priority values and can match the same
URL.

When it affects rules defined in your code base, solve the conflict adjusting those instead_of and priority values
as needed.

When it affects rules from a external package, you have the following options to solve the conflict:

• Subclass one of the conflicting page object classes in your code base, using a similar rule except for a tie-breaking
change to its instead_of or priority value.

For example, if package1.A and package2.B are page object classes with conflicting rules, with a default
priority (500), and you want package1.A to take precedence, declare a new page object class as follows:

from package1 import A
from web_poet import handle_urls

@handle_urls(..., priority=510)
class NewA(A):

pass

• If your framework allows defining a custom list of rules, you could use web_poet.default_registry meth-
ods like get_rules() or search() to build such a list, including only rules that have no conflicts.

32 Chapter 8. Rules

CHAPTER

NINE

FIELDS

A field is a read-only property in a page object class decorated with @field instead of @property.

Each field is named after a key of the item that the page object class returns. A field uses the inputs of its page object
class to return the right value for the matching item key.

For example:

from typing import Optional

import attrs
from web_poet import ItemPage, HttpResponse, field

@attrs.define
class MyPage(ItemPage):

response: HttpResponse

@field
def foo(self) -> Optional[str]:

return self.response.css(".foo").get()

9.1 Synchronous and asynchronous fields

Fields can be either synchronous (def) or asynchronous (async def).

Asynchronous fields make sense, for example, when sending additional requests:

from typing import Optional

import attrs
from web_poet import ItemPage, HttpClient, HttpResponse, field

@attrs.define
class MyPage(ItemPage):

response: HttpResponse
http: HttpClient

@field
def name(self) -> Optional[str]:

(continues on next page)

33

https://docs.python.org/3/library/functions.html#property

web-poet Documentation, Release 0.17.0

(continued from previous page)

return self.response.css(".name").get()

@field
async def price(self) -> Optional[str]:

resp = await self.http.get("...")
return resp.json().get("price")

Unlike the values of synchronous fields, the values of asynchronous fields need to be awaited:

page = MyPage(...)
name = page.name
price = await page.price

Mixing synchronous and asynchronous fields can be messy:

• You need to know whether a field is synchronous or asynchronous to write the right code to read its value.

• If a field changes from synchronous to asynchronous or vice versa, calls that read the field need to be updated.

Changing from synchronous to asynchronous might be sometimes necessary due to website changes (e.g. needing
additional requests).

To address these issues, use ensure_awaitable() to read both synchronous and asynchronous fields with the same
code:

from web_poet.utils import ensure_awaitable

page = MyPage(...)
name = await ensure_awaitable(page.name)
price = await ensure_awaitable(page.price)

Note: Using asynchronous fields only also works, but prevents accessing other fields from field processors.

9.2 Inheritance

To create a page object class that is very similar to another, subclassing the former page object class is often a good
approach to maximize code reuse.

In a subclass of a page object class you can reimplement fields, add fields, remove fields, or rename fields.

9.2.1 Reimplementing a field

Reimplementing a field when subclassing a page object class should be straightforward:

import attrs
from web_poet import field, ensure_awaitable

from my_library import BasePage

@attrs.define
(continues on next page)

34 Chapter 9. Fields

web-poet Documentation, Release 0.17.0

(continued from previous page)

class CustomPage(BasePage):

@field
async def foo(self) -> str:

base_foo = await ensure_awaitable(super().foo)
return f"{base_foo} (modified)"

9.2.2 Adding a field

To add a new field to a page object class when subclassing:

1. Define a new item class that includes the new field, for example a subclass of the item class returned by the
original page object class.

2. In your new page object class, subclass both the original page object class and Returns, the latter including the
new item class between brackets.

3. Implement the extraction code for the new field in the new page object class.

For example:

import attrs
from web_poet import field, Returns

from my_library import BasePage, BaseItem

@attrs.define
class CustomItem(BaseItem):

new_field: str

@attrs.define
class CustomPage(BasePage, Returns[CustomItem]):

@field
def new_field(self) -> str:

...

9.2.3 Removing a field

To remove a field from a page object class when subclassing:

1. Define a new item class that defines all fields but the one being removed.

2. In your new page object class, subclass the original page object class, Returns with the new item class between
brackets, and set skip_nonitem_fields=True.

When building an item, page object class fields without a matching item class field will now be ignored, rather
than raising an exception.

Your new page object class will still define the field, but the resulting item will not.

For example:

9.2. Inheritance 35

web-poet Documentation, Release 0.17.0

import attrs
from web_poet import Returns

from my_library import BasePage

@attrs.define
class CustomItem:

kept_field: str

@attrs.define
class CustomPage(BasePage, Returns[CustomItem], skip_nonitem_fields=True):

pass

Alternatively, you can consider using a page object as input for removing fields. It is more verbose than subclassing,
because you need to define every field in your page object class, but it can catch some mismatches between page object
class fields and item class fields that would otherwise be hidden by skip_nonitem_fields.

9.2.4 Renaming a field

To rename a field from a page object class when subclassing:

1. Define a new item class that defines all fields, including the renamed field.

2. In your new page object class, subclass the original page object class, Returns with the new item class between
brackets, and set skip_nonitem_fields=True.

When building an item, page object class fields without a matching item class field will now be ignored, rather
than raising an exception.

3. Define a field for the new field name that returns the value from the old field name.

Your new page object class will still define the old field name, but the resulting item will not.

For example:

import attrs
from web_poet import Returns

from my_library import BasePage

@attrs.define
class CustomItem:

new_field: str

@attrs.define
class CustomPage(BasePage, Returns[CustomItem], skip_nonitem_fields=True):

@field
async def new_field(self) -> str:

return ensure_awaitable(self.old_field)

Alternatively, you can consider using a page object as input for renaming fields. It is more verbose than subclassing,
because you need to define every field in your page object class, but it can catch some mismatches between page object
class fields and item class fields that would otherwise be hidden by skip_nonitem_fields.

36 Chapter 9. Fields

web-poet Documentation, Release 0.17.0

9.3 Composition

There are 2 forms of composition that you can use when writing a page object: using a page object as input, and using
a field mixing.

9.3.1 Using a page object as input

You can reuse a page object class from another page object class using composition instead of inheritance by using the
original page object class as a dependency in a brand new page object class returning a brand new item class.

This is a good approach when you want to reuse code but the page object classes are very different, or when you want
to remove or rename fields without relying on skip_nonitem_fields.

For example:

import attrs
from web_poet import ItemPage, field, ensure_awaitable

from my_library import BasePage

@attrs.define
class CustomItem:

name: str

@attrs.define
class CustomPage(ItemPage[CustomItem]):

base: BasePage

@field
async def name(self) -> str:

name = await ensure_awaitable(self.base.name)
brand = await ensure_awaitable(self.base.brand)
return f"{brand}: {name}"

Instead of a page object, it is possible to declare the item it returns as a dependency in your new page object class. For
example:

import attrs
from web_poet import ItemPage, field

from my_library import BaseItem

@attrs.define
class CustomItem:

name: str

@attrs.define
class CustomPage(ItemPage[CustomItem]):

base: BaseItem

@field
def name(self) -> str:

return f"{self.base.brand}: {self.base.name}"

9.3. Composition 37

web-poet Documentation, Release 0.17.0

This gives you the flexibility to use rules to set the page object class to use when building the item. Also, item fields
can be read from synchronous methods even if the source page object fields were asynchronous.

On the other hand, all fields of the source page object class will always be called to build the entire item, which may
be a waste of resources if you only need to access some of the item fields.

9.3.2 Field mixins

You can subclass web_poet.fields.FieldsMixin to create a mixin to reuse field definitions across multiple,
otherwise-unrelated classes. For example:

import attrs
from web_poet import ItemPage, field
from web_poet.fields import FieldsMixin

from my_library import BaseItem1, BaseItem2

@attrs.define
class CustomItem:

name: str

class NameMixin(FieldsMixin):
@field
def name(self) -> str:

return f"{self.base.brand}: {self.base.name}"

@attrs.define
class CustomPage1(NameMixin, ItemPage[CustomItem]):

base: BaseItem1

@attrs.define
class CustomPage2(NameMixin, ItemPage[CustomItem]):

base: BaseItem2

9.4 Field processors

It’s often needed to clean or process field values using reusable functions. @field takes an optional out argument
with a list of such functions. They will be applied to the field value before returning it:

from web_poet import ItemPage, HttpResponse, field

def clean_tabs(s: str) -> str:
return s.replace('\t', ' ')

def add_brand(s: str, page: ItemPage) -> str:
return f"{page.brand} - {s}"

class MyPage(ItemPage):
(continues on next page)

38 Chapter 9. Fields

https://en.wikipedia.org/wiki/Mixin

web-poet Documentation, Release 0.17.0

(continued from previous page)

response: HttpResponse

@field(out=[clean_tabs, str.strip, add_brand])
def name(self) -> str:

return self.response.css(".name ::text").get() or ""

@field(cached=True)
def brand(self) -> str:

return self.response.css(".brand ::text").get() or ""

9.4.1 Accessing other fields from field processors

If a processor takes an argument named page, that argument will contain the page object instance. This allows pro-
cessing a field differently based on the values of other fields.

Be careful of circular references. Accessing a field runs its processors; if two fields reference each other,
RecursionError will be raised.

You should enable caching for fields accessed in processors, to avoid unnecessary recomputation.

Processors can be applied to asynchronous fields, but processor functions must be synchronous. As a result, only values
of synchronous fields can be accessed from processors through the page argument.

9.4.2 Default processors

In addition to the out argument of @field , you can define processors at the page object class level by defining a nested
class named Processors:

import attrs
from web_poet import ItemPage, HttpResponse, field

def clean_tabs(s: str) -> str:
return s.replace('\t', ' ')

@attrs.define
class MyPage(ItemPage):

response: HttpResponse

class Processors:
name = [clean_tabs, str.strip]

@field
def name(self) -> str:

return self.response.css(".name ::text").get() or ""

If Processors contains an attribute with the same name as a field, the value of that attribute is used as a list of default
processors for the field, to be used if the out argument of @field is not defined.

You can also reuse and extend the processors defined in a base class by explicitly accessing or subclassing the
Processors class:

9.4. Field processors 39

https://docs.python.org/3/library/exceptions.html#RecursionError

web-poet Documentation, Release 0.17.0

import attrs
from web_poet import ItemPage, HttpResponse, field

def clean_tabs(s: str) -> str:
return s.replace('\t', ' ')

@attrs.define
class MyPage(ItemPage):

response: HttpResponse

class Processors:
name = [str.strip]

@field
def name(self) -> str:

return self.response.css(".name ::text").get() or ""

class MyPage2(MyPage):
class Processors(MyPage.Processors):

name uses the processors in MyPage.Processors.name
description now also uses them and also clean_tabs
description = MyPage.Processors.name + [clean_tabs]

@field
def description(self) -> str:

return self.response.css(".description ::text").get() or ""

brand uses the same processors as name
@field(out=MyPage.Processors.name)
def brand(self) -> str:

return self.response.css(".brand ::text").get() or ""

9.4.3 Processors for nested fields

Some item fields contain nested items (e.g. a product can contain a list of variants) and it’s useful to have processors
for fields of these nested items.

You can use the same logic for them as for normal fields if you define an extractor class that produces these nested
items. Such classes should inherit from Extractor.

In the simplest cases you need to pass a selector to them:

from typing import Any, Dict, List

import attrs
from parsel import Selector
from web_poet import Extractor, ItemPage, HttpResponse, field

@attrs.define
class MyPage(ItemPage):

response: HttpResponse

(continues on next page)

40 Chapter 9. Fields

web-poet Documentation, Release 0.17.0

(continued from previous page)

@field
async def variants(self) -> List[Dict[str, Any]]:

variants = []
for color_sel in self.response.css(".color"):

variant = await VariantExtractor(color_sel).to_item()
variants.append(variant)

return variants

@attrs.define
class VariantExtractor(Extractor):

sel: Selector

@field(out=[str.strip])
def color(self) -> str:

return self.sel.css(".name::text").get() or ""

In such cases you can also use SelectorExtractor as a shortcut that provides css() and xpath():

class VariantExtractor(SelectorExtractor):
@field(out=[str.strip])
def color(self) -> str:

return self.css(".name::text").get() or ""

You can also pass other data in addition to, or instead of, selectors, such as dictionaries with some data:

@attrs.define
class VariantExtractor(Extractor):

variant_data: dict

@field(out=[str.strip])
def color(self) -> str:

return self.variant_data.get("color") or ""

9.5 Field caching

When writing extraction code for Page Objects, it’s common that several attributes reuse some computation. For
example, you might need to do an additional request to get an API response, and then fill several attributes from this
response:

from typing import Dict, Optional

from web_poet import ItemPage, HttpResponse, HttpClient, validates_input

class MyPage(ItemPage):
response: HttpResponse
http: HttpClient

@validates_input
async def to_item(self) -> Dict[str, Optional[str]]:

api_url = self.response.css("...").get()
(continues on next page)

9.5. Field caching 41

web-poet Documentation, Release 0.17.0

(continued from previous page)

api_response = await self.http.get(api_url).json()
return {

'name': self.response.css(".name ::text").get(),
'price': api_response.get("price"),
'sku': api_response.get("sku"),

}

When converting such Page Objects to use fields, be careful not to make an API call (or some other heavy computation)
multiple times. You can do it by extracting the heavy operation to a method, and caching the results:

from typing import Dict

from web_poet import ItemPage, HttpResponse, HttpClient, field, cached_method

class MyPage(ItemPage):
response: HttpResponse
http: HttpClient

@cached_method
async def api_response(self) -> Dict[str, str]:

api_url = self.response.css("...").get()
return await self.http.get(api_url).json()

@field
def name(self) -> str:

return self.response.css(".name ::text").get() or ""

@field
async def price(self) -> str:

api_response = await self.api_response()
return api_response.get("price") or ""

@field
async def sku(self) -> str:

api_response = await self.api_response()
return api_response.get("sku") or ""

As you can see, web-poet provides cached_method() decorator, which allows to memoize the function results. It
supports both sync and async methods, i.e. you can use it on regular methods (def foo(self)), as well as on async
methods (async def foo(self)).

The refactored example, with per-attribute fields, is more verbose than the original one, where a single to_itemmethod
is used. However, it provides some advantages — if only a subset of attributes is needed, then it’s possible to use the
Page Object without doing unnecessary work. For example, if user only needs name field in the example above, no
additional requests (API calls) will be made.

Sometimes you might want to cache a @field, i.e. a property which computes an attribute of the final item. In such
cases, use @field(cached=True) decorator instead of @field.

42 Chapter 9. Fields

web-poet Documentation, Release 0.17.0

9.5.1 cached_method vs lru_cache vs cached_property

If you’re an experienced Python developer, you might wonder why is cached_method() decorator needed, if Python
already provides functools.lru_cache(). For example, one can write this:

from functools import lru_cache
from web_poet import ItemPage

class MyPage(ItemPage):
...
@lru_cache
def heavy_method(self):

...

Don’t do it! There are two issues with functools.lru_cache(), which make it unsuitable here:

1. It doesn’t work properly on methods, because self is used as a part of the cache key. It means a reference to an
instance is kept in the cache, and so created page objects are never deallocated, causing a memory leak.

2. functools.lru_cache() doesn’t work on async def methods, so you can’t cache e.g. results of API calls
using functools.lru_cache().

cached_method() solves both of these issues. You may also use functools.cached_property(), or an ex-
ternal package like async_property with async versions of @property and @cached_property decorators; unlike
functools.lru_cache(), they all work fine for this use case.

9.5.2 Exception caching

Note that exceptions are not cached - neither by cached_method(), nor by @field(cached=True), nor by functools.
lru_cache(), nor by functools.cached_property().

Usually it’s not an issue, because an exception is usually propagated, and so there are no duplicate calls anyways. But,
just in case, keep this in mind.

9.6 Field metadata

web-poet allows to store arbitrary information for each field using the meta keyword argument:

from web_poet import ItemPage, field

class MyPage(ItemPage):

@field(meta={"expensive": True})
async def my_field(self):

...

To retrieve this information, use web_poet.fields.get_fields_dict(); it returns a dictionary, where keys are
field names, and values are web_poet.fields.FieldInfo instances.

from web_poet.fields import get_fields_dict

fields_dict = get_fields_dict(MyPage)
field_names = fields_dict.keys()

(continues on next page)

9.6. Field metadata 43

https://docs.python.org/3/library/functools.html#functools.lru_cache
https://docs.python.org/3/library/functools.html#functools.lru_cache
https://docs.python.org/3/library/functools.html#functools.lru_cache
https://docs.python.org/3/library/functools.html#functools.lru_cache
https://docs.python.org/3/library/functools.html#functools.cached_property
https://github.com/ryananguiano/async_property
https://docs.python.org/3/library/functools.html#functools.lru_cache
https://docs.python.org/3/library/functools.html#functools.lru_cache
https://docs.python.org/3/library/functools.html#functools.lru_cache
https://docs.python.org/3/library/functools.html#functools.cached_property

web-poet Documentation, Release 0.17.0

(continued from previous page)

my_field_meta = fields_dict["my_field"].meta

print(field_names) # dict_keys(['my_field'])
print(my_field_meta) # {'expensive': True}

9.7 Input validation

Input validation, if used, happens before field evaluation, and it may override the values of fields, preventing field
evaluation from ever happening. For example:

class Page(ItemPage[Item]):
def validate_input(self) -> Item:

return Item(foo="bar")

@field
def foo(self):

raise RuntimeError("This exception is never raised")

assert Page().foo == "bar"

Field evaluation may still happen for a field if the field is used in the implementation of the validate_inputmethod.
Note, however, that only synchronous fields can be used from the validate_input method.

44 Chapter 9. Fields

CHAPTER

TEN

ADDITIONAL REQUESTS

Some websites require page interactions to load some information, such as clicking a button, scrolling down or hovering
on some element. These interactions usually trigger background requests that are then loaded using JavaScript.

To extract such data, reproduce those requests using HttpClient. Include HttpClient among the inputs of your
page object, and use an asynchronous field or method to call one of its methods.

For example, simulating a click on a button that loads product images could look like:

import attrs
from web_poet import HttpClient, HttpError, field
from zyte_common_items import Image, ProductPage

@attrs.define
class MyProductPage(ProductPage]):

http: HttpClient

@field
def productId(self):

return self.css("::attr(product-id)").get()

@field
async def images(self):

url = f"https://api.example.com/v2/images?id={self.productId}"
try:

response = await self.http.get(url)
except HttpError:

return []
else:

urls = response.css(".product-images img::attr(src)").getall()
return [Image(url=url) for url in urls]

Warning: HttpClient should only be used to handle the type of scenarios mentioned above. Using HttpClient
for crawling logic would defeat the purpose of web-poet.

45

web-poet Documentation, Release 0.17.0

10.1 Making a request

HttpClient provides multiple asynchronous request methods, such as:

http = HtpClient()
response = await http.get(url)
response = await http.post(url, body=b"...")
response = await http.request(url, method="...")
response = await http.execute(HttpRequest(url, method="..."))

Request methods also accept custom headers and body, for example:

http.post(
url,
headers={"Content-Type": "application/json;charset=UTF-8"},
body=json.dumps({"foo": "bar"}).encode("utf-8"),

)

Request methods may either raise an HttpError or return an HttpResponse. See Working with HttpResponse.

Note: HttpClient methods are expected to follow any redirection except when the request method is HEAD. This
means that the HttpResponse that you get is already the end of any redirection trail.

10.2 Concurrent requests

To send multiple requests concurrently, use HttpClient.batch_execute, which accepts any number of
HttpRequest instances as input, and returns HttpResponse instances (and HttpError instances when using
return_exceptions=True) in the input order. For example:

import attrs
from web_poet import HttpClient, HttpError, HttpRequest, field
from zyte_common_items import Image, ProductPage, ProductVariant

@attrs.define
class MyProductPage(ProductPage):

http: HttpClient

max_variants = 10

@field
def productId(self):

return self.css("::attr(product-id)").get()

@field
async def variants(self):

requests = [
HttpRequest(f"https://example.com/api/variant/{self.productId}/{index}")
for index in range(self.max_variants)

]
(continues on next page)

46 Chapter 10. Additional requests

web-poet Documentation, Release 0.17.0

(continued from previous page)

responses = await self.http.batch_execute(*requests, return_exceptions=True)
return [

ProductVariant(color=response.css("::attr(color)").get())
for response in responses
if not isinstance(response, HttpError)

]

You can alternatively use asyncio together with HttpClient to handle multiple requests. For example, you can use
asyncio.as_completed() to process the first response from a group of requests as early as possible.

10.3 Error handling

HttpClient methods may raise an exception of type HttpError or a subclass.

If the response HTTP status code (response.status) is 400 or higher, HttpResponseError is raised. In case of
connection errors, TLS errors and similar, HttpRequestError is raised.

HttpError provides access to the offending request, and HttpResponseError also provides access to the offending
response.

10.4 Retrying additional requests

Input validation allows retrying all inputs from a page object. To retry only additional requests, you must handle retries
on your own.

Your code is responsible for retrying additional requests until good response data is received, or until some maximum
number of retries is exceeded.

It is up to you to decide what the maximum number of retries should be for a given additional request, based on your
experience with the target website.

It is also up to you to decide how to implement retries of additional requests.

One option would be tenacity. For example, to try an additional request 3 times before giving up:

import attrs
from tenacity import retry, stop_after_attempt
from web_poet import HttpClient, HttpError, field
from zyte_common_items import ProductPage

@attrs.define
class MyProductPage(ProductPage):

http: HttpClient

@field
def productId(self):

return self.css("::attr(product-id)").get()

@retry(stop=stop_after_attempt(3))
async def get_images(self):

return self.http.get(f"https://api.example.com/v2/images?id={self.productId}")
(continues on next page)

10.3. Error handling 47

https://docs.python.org/3/library/asyncio.html#module-asyncio
https://docs.python.org/3/library/asyncio-task.html#asyncio.as_completed
https://tenacity.readthedocs.io/en/latest/index.html

web-poet Documentation, Release 0.17.0

(continued from previous page)

@field
async def images(self):

try:
response = await self.get_images()

except HttpError:
return []

else:
urls = response.css(".product-images img::attr(src)").getall()
return [Image(url=url) for url in urls]

If the reason your additional request fails is outdated or missing data from page object input, do not try to reproduce
the request for that input as an additional request. Request fresh input instead.

48 Chapter 10. Additional requests

CHAPTER

ELEVEN

INPUT VALIDATION

Sometimes the data that your page object receives as input may be invalid.

You can define a validate_input method in a page object class to check its input data and determine how to handle
invalid input.

validate_input is called on the first execution of ItemPage.to_item() or the first access to a field. In both cases
validation happens early; in the case of fields, it happens before field evaluation.

validate_input is a synchronous method that expects no parameters, and its outcome may be any of the following:

• Return None, indicating that the input is valid.

• Raise Retry, indicating that the input looks like the result of a temporary issue, and that trying to fetch similar
input again may result in valid input.

See also Retrying additional requests.

• Raise UseFallback , indicating that the page object does not support the input, and that an alternative parsing
implementation should be tried instead.

For example, imagine you have a page object for website commerce.example, and that commerce.example is
built with a popular e-commerce web framework. You could have a generic page object for products of web-
sites using that framework, FrameworkProductPage, and a more specific page object for commerce.example,
EcommerceExampleProductPage. If EcommerceExampleProductPage cannot parse a product page, but it
looks like it might be a valid product page, you would raise UseFallback to try to parse the same product page
with FrameworkProductPage, in case it works.

Note: web-poet does not dictate how to define or use an alternative parsing implementation as fallback. It is up
to web-poet frameworks to choose how they implement fallback handling.

• Return an item to override the output of the to_item method and of fields.

For input not matching the expected type of data, returning an item that indicates so is recommended.

For example, if your page object parses an e-commerce product, and the input data corresponds to a list of
products rather than a single product, you could return a product item that somehow indicates that it is not a valid
product item, such as Product(is_valid=False).

For example:

def validate_input(self):
if self.css('.product-id::text') is not None:

return
if self.css('.http-503-error'):

raise Retry()
(continues on next page)

49

web-poet Documentation, Release 0.17.0

(continued from previous page)

if self.css('.product'):
raise UseFallback()

if self.css('.product-list'):
return Product(is_valid=False)

You may use fields in your implementation of the validate_inputmethod, but only synchronous fields are supported.
For example:

class Page(WebPage[Item]):
def validate_input(self):

if not self.name:
raise UseFallback()

@field(cached=True)
def name(self):

return self.css(".product-name ::text")

Tip: Cache fields used in the validate_input method, so that when they are used from to_item they are not
evaluated again.

If you implement a custom to_item method, as long as you are inheriting from ItemPage, you can enable input
validation decorating your custom to_item method with validates_input():

from web_poet import validates_input

class Page(ItemPage[Item]):
@validates_input
async def to_item(self):

...

Retry and UseFallback may also be raised from the to_item method. This could come in handy, for example, if
after you execute some asynchronous code, such as an additional request, you find out that you need to retry the original
request or use a fallback.

11.1 Input Validation Exceptions

exception web_poet.exceptions.PageObjectAction

Base class for exceptions that can be raised from a page object to indicate something to be done about that page
object.

exception web_poet.exceptions.Retry

The page object found that the input data is partial or empty, and a request retry may provide better input.

exception web_poet.exceptions.UseFallback

The page object cannot extract data from the input, but the input seems valid, so an alternative data extraction
implementation for the same item type may succeed.

50 Chapter 11. Input validation

CHAPTER

TWELVE

USING PAGE PARAMS

In some cases, page object classes might require or allow parameters from the calling code, e.g. to change their behavior
or make optimizations.

To support parameters, add PageParams to your inputs:

import attrs
from web_poet import PageParams, WebPage

@attrs.define
class MyPage(WebPage):

page_params: PageParams

In your page object class, you can read parameters from a PageParams object as you would from a dict:

foo = self.page_params["foo"]
bar = self.page_params.get("bar", "default")

The way the calling code sets those parameters depends on your web-poet framework.

12.1 Example: Controlling item values

import attrs
import web_poet
from web_poet import validates_input

@attrs.define
class ProductPage(web_poet.WebPage):

page_params: web_poet.PageParams

default_tax_rate = 0.10

@validates_input
def to_item(self):

item = {
"url": self.url,
"name": self.css("#main h3.name ::text").get(),
"price": self.css("#main .price ::text").get(),

}
(continues on next page)

51

https://docs.python.org/3/library/stdtypes.html#dict

web-poet Documentation, Release 0.17.0

(continued from previous page)

self.calculate_price_with_tax(item)
return item

@staticmethod
def calculate_price_with_tax(item):

tax_rate = self.page_params.get("tax_rate", self.default_tax_rate)
item["price_with_tax"] = item["price"] * (1 + tax_rate)

From the example above, we were able to provide an optional information regarding the tax rate of the product. This
could be useful when trying to support the different tax rates for each state or territory. However, since we’re treating
the tax_rate as optional information, notice that we also have a the default_tax_rate as a backup value just in case
it’s not available.

12.2 Example: Controlling page object behavior

Let’s try an example wherein PageParams is able to control how additional requests are being used. Specifically, we
are going to use PageParams to control the number of pages visited.

from typing import List

import attrs
import web_poet
from web_poet import validates_input

@attrs.define
class ProductPage(web_poet.WebPage):

http: web_poet.HttpClient
page_params: web_poet.PageParams

default_max_pages = 5

@validates_input
async def to_item(self):

return {"product_urls": await self.get_product_urls()}

async def get_product_urls(self) -> List[str]:
Simulates scrolling to the bottom of the page to load the next
set of items in an "Infinite Scrolling" category list page.
max_pages = self.page_params.get("max_pages", self.default_max_pages)
requests = [

self.create_next_page_request(page_num)
for page_num in range(2, max_pages + 1)

]
responses = await http.batch_execute(*requests)
return [

url
for response in responses
for product_urls in self.parse_product_urls(response)
for url in product_urls

(continues on next page)

52 Chapter 12. Using page params

web-poet Documentation, Release 0.17.0

(continued from previous page)

]

@staticmethod
def create_next_page_request(page_num):

next_page_url = f"https://example.com/category/products?page={page_num}"
return web_poet.Request(url=next_page_url)

@staticmethod
def parse_product_urls(response: web_poet.HttpResponse):

return response.css("#main .products a.link ::attr(href)").getall()

From the example above, we can see how PageParams is able to arbitrarily limit the pagination behavior by passing
an optional max_pages info. Take note that a default_max_pages value is also present in the page object class in
case the PageParams instance did not provide it.

12.2. Example: Controlling page object behavior 53

web-poet Documentation, Release 0.17.0

54 Chapter 12. Using page params

CHAPTER

THIRTEEN

STATS

During parsing, storing some data about the parsing itself can be useful for debugging, monitoring, and reporting. The
Stats page input allows storing such data.

For example, you can use stats to track which parsing code is actually used, so that you can remove code once it is no
longer necessary due to upstream changes:

from attrs import define
from web_poet import field, Stats, WebPage

@attrs.define
class MyPage(WebPage):

stats: Stats

@field
def title(self):

if title := self.css("h1::text").get():
self.stats.inc("MyPage/field-src/title/h1")

elif title := self.css("h2::text").get():
self.stats.inc("MyPage/field-src/title/h2")

return title

55

web-poet Documentation, Release 0.17.0

56 Chapter 13. Stats

CHAPTER

FOURTEEN

TESTS FOR PAGE OBJECTS

Page Objects that inherit from ItemPage can be tested by saving the dependencies needed to create one and the result
of to_item(), recreating the Page Object from the dependencies, running its to_item() and comparing the result to
the saved one. web-poet provides the following tools for this:

• dependency serialization into a Python object and into a set of files;

• recreating Page Objects from the serialized dependencies;

• a high-level function to save a test fixture;

• a pytest plugin that discovers fixtures and runs tests for them.

14.1 Serialization

web_poet.serialization.serialize() can be used to serialize an iterable of Page Object dependencies to a
Python object. web_poet.serialization.deserialize() can be used to recreate a Page Object from this se-
rialized data.

An instance of web_poet.serialization.SerializedDataFileStorage can be used to write the serialized data
to a set of files in a given directory and to read it back.

Note: We only support serializing dependencies, not Page Object instances, because the only universal way to recreate
a Page Object is from its dependencies, not from some saved internal state.

Each dependency is serialized to one or several bytes objects, each of which is saved as a single file. web_poet.
serialization.serialize_leaf() and web_poet.serialization.deserialize_leaf() are used to convert
between a dependency and this set of bytes objects. They are implemented using functools.singledispatch()
and while the types provided by web-poet are supported out of the box, user-defined types need a pair of implemen-
tation functions that need to be registered using web_poet.serialization.register_serialization().

14.2 Fixtures

The provided pytest plugin expects fixtures in a certain layout. A set of fixtures for a single Page Object should be
contained in a directory named as that Page Object fully qualified class name. Each fixture is a directory inside it, that
contains data for Page Object inputs and output:

fixtures
my_project.pages.MyItemPage

test-1
(continues on next page)

57

https://docs.python.org/3/library/functools.html#functools.singledispatch

web-poet Documentation, Release 0.17.0

(continued from previous page)

inputs
HttpClient.exists
HttpResponse-body.html
HttpResponse-info.json
ResponseUrl.txt

meta.json
output.json

test-2
inputs

HttpClient.exists
HttpClient-0-HttpRequest.info.json
HttpClient-0-HttpResponse.body.html
HttpClient-0-HttpResponse.info.json
HttpClient-1-HttpRequest.body.txt
HttpClient-1-HttpRequest.info.json
HttpClient-1-HttpResponse.body.html
HttpClient-1-HttpResponse.info.json
HttpResponse-body.html
HttpResponse-info.json
ResponseUrl.txt

meta.json
output.json

web_poet.testing.Fixture.save() can be used to create a fixture inside a Page Object directory from an iterable
of dependencies, an output item and an optional metadata dictionary. It can optionally take a name for the fixture
directory. By default it uses incrementing names “test-1”, “test-2” etc.

Note: output.json contains a result of page_object.to_item() converted to a dict using the itemadapter library
and saved as JSON.

After generating a fixture you can edit output.json to modify expected field values and add new fields, which is
useful when creating tests for code that isn’t written yet or before modifying its behavior.

14.3 scrapy-poet integration

Projects that use the scrapy-poet library can use the Scrapy command provided by it to generate fixtures in a convenient
way. It’s available starting with scrapy-poet 0.8.0.

14.4 Running tests

The provided pytest plugin is automatically registered when web-poet is installed, and running python -m pytest
in a directory containing fixtures will discover them and run tests for them.

By default, the plugin generates:

• a test which checks that to_item() doesn’t raise an exception (i.e. it can be executed),

• a test per each output attribute of the item,

• an additional test to check that there are no extra attributes in the output.

58 Chapter 14. Tests for page objects

https://github.com/scrapy/itemadapter
https://github.com/scrapinghub/scrapy-poet
https://scrapy-poet.readthedocs.io/en/latest/testing.html#testing

web-poet Documentation, Release 0.17.0

For example, if your item has 5 attributes, and you created 2 fixtures, pytest will run (5+1+1)*2 = 14 tests. This allows
to report failures for individual fields separately.

If to_item raises an error, there is no point in running other tests, so they’re skipped in this case.

If you prefer less granular test failure reporting, you can use pytest with the --web-poet-test-per-item option:

python -m pytest --web-poet-test-per-item

In this case there is going to be a single test per fixture: if the result is not fully correct, the test fails. So, following the
previous example, it’d be 2 tests instead of 14.

14.5 Test-Driven Development

You can follow TDD (Test-Driven Development) approach to develop your page objects. To do so,

1. Generate a fixture (see scrapy-poet integration).

2. Populate output.json with the correct expected output.

3. Run the tests (see Running tests) and update the code until all tests pass. It’s convenient to use web-poet Fields,
and implement extraction field-by-field, because you’ll be getting an additional test passing after each field is
implemented.

This approach allows a fast feedback loop: there is no need to download page multiple times, and you have a clear
progress indication for your work (number of failing tests remaining). Also, in the end you get a regression test, which
can be helpful later.

Sometimes it may be awkward to set the correct value in JSON before starting the development, especially if a value is
large or has a complex structure. For example, this could be the case for e-commerce product description field, which
can be hard to copy-paste from the website, and which may have various whitespace normalization rules which you
need to apply.

In this case, it may be more convenient to implement the extraction first, and only then populate the output.json file
with the correct value.

You can use python -m web_poet.testing rerun <fixture_path> command in this case, to re-run the page
object using the inputs saved in a fixture. This command prints output of the page object, as JSON; you can then copy-
paste relevant parts to the output.json file. It’s also possible to make the command print only some of the fields. For
example, you might run the following command after implementing extraction for “description” and “descriptionHtml”
fields in my_project.pages.MyItemPage:

python -m web_poet.testing rerun \
fixtures/my_project.pages.MyItemPage/test-1 \
--fields description,descriptionHtml

It may output something like this:

{
"description": "..description of the product..",
"descriptionHtml": "<p>...</p>"

}

If these values look good, you can update fixtures/my_project.pages.MyItemPage/test-1/output.json file
with these values.

14.5. Test-Driven Development 59

web-poet Documentation, Release 0.17.0

14.6 Handling time fields

Sometimes output of a page object might depend on the current time. For example, the item may contain the scraping
datetime, or a current timestamp may be used to build some URLs. When a test runs at a different time it will break.
To avoid this the metadata dictionary can contain a frozen_time field set to the time value used when generating the
test. This will instruct the test runner to use the same time value so that field comparisons are still correct.

The value can be any string understood by dateutil. If it doesn’t include timezone information, the local time of the
machine will be assumed. If it includes timezone information, on non-Windows systems the test process will be exe-
cuted in that timezone, so that output fields that contain local time are correct. On Windows systems (where changing
the process timezone is not possible) the time value will be converted to the local time of the machine, and such fields
will containt wrong data if these timezones don’t match. Consider an example item:

import datetime
from web_poet import WebPage, validates_input

class DateItemPage(WebPage):
@validates_input
async def to_item(self) -> dict:

e.g. 2001-01-01 11:00:00 +00
now = datetime.datetime.now(datetime.timezone.utc)
return {

'2001-01-01T11:00:00Z'
"time_utc": now.strftime("%Y-%M-%dT%H:%M:%SZ"),
if the current timezone is CET, then '2001-01-01T12:00:00+01:00'
"time_local": now.astimezone().strftime("%Y-%M-%dT%H:%M:%S%z"),

}

We will assume that the fixture was generated in CET (UTC+1).

• If the fixture doesn’t have the frozen_timemetadata field, the item will simply contain the current time and the
test will always fail.

• If frozen_time doesn’t contain the timezone data (e.g. it is 2001-01-01T11:00:00), the item will depend
on the machine timezone: in CET it will contain the expected values, in timezones with a different offset
time_local will be different.

• If frozen_time contains the timezone data and the system is not Windows, the time_local field will contain
the date in that timezone, so if the timezone in frozen_time is not UTC+1, the test will fail.

• If the system is Windows, the frozen_time value will be converted to the machine timezone, so the item will
depend on that timezone, just like when frozen_time doesn’t contain the timezone data, and time_local will
similarly be only correct if the machine timezone has the same offset as CET.

This means that most combinations of setups will work if frozen_time contains the timezone data, except for running
tests on Windows, in which case the machine timezone should match the timezone in frozen_time. Also, if items
do not depend on the machine timezone (e.g. if all datetime-derived data they contain is in UTC), the tests for them
should work everywhere.

There is an additional limitation which we plan to fix in future versions. The time is set to the frozen_time value when
the test generation (if using the scrapy-poet command) or the test run starts, but it ticks during the generation/run
itself, so if it takes more than 1 second (which is quite possible even in simple cases) the time fields will have values
several seconds later than frozen_time. For now we recommend to work around this problem by manually editing
the output.json file to put the value equal to frozen_time in these fields, as running the test shoudn’t take more
than 1 second.

60 Chapter 14. Tests for page objects

https://github.com/dateutil/dateutil

web-poet Documentation, Release 0.17.0

14.7 Storing fixtures in Git

Fixtures can take a lot of disk space, as they usually include page responses and may include other large files, so we
recommend using Git LFS when storing them in Git repos to reduce the repo space and get other performance benefits.
Even if your fixtures are currently small, it may be useful to do this from the beginning, as migrating files to LFS is not
easy and requires rewriting the repo history.

To use Git LFS you need a Git hosting provider that supports it, and major providers and software (e.g. GitHub,
Bitbucket, GitLab) support it. There are also implementations for standalone Git servers.

Assuming you store the fixtures in the directory named “fixtures” in the repo root, the workflow should be as following.
Enable normal diffs for LFS files in this repo:

git config diff.lfs.textconv cat

Enable LFS for the fixtures directory before committing anything in it:

git lfs track "fixtures/**"

Commit the .gitattributes file (which stores the tracking information):

git add .gitattributes
git commit

After generating the fixtures just commit them as usual:

git add fixtures/test-1
git commit

After this all usual commands including push, pull or checkout should work as expected on these files.

Please also check the official Git LFS documentation for more information.

14.8 Additional requests support

If the page object uses the HttpClient dependency to make additional requests, the generated fixtures will con-
tain these requests and their responses (or exceptions raised when the response is not received). When the test runs,
HttpClient will return the saved responses without doing actual requests.

Currently requests are compared by their URL, method, headers and body, so if a page object makes requests that differ
between runs, the test won’t be able to find a saved response and will fail.

14.9 Test coverage

The coverage for page object code is reported correctly if tools such as coverage are used when running web-poet tests.

14.7. Storing fixtures in Git 61

https://git-lfs.com/
https://github.com/git-lfs/git-lfs/wiki/Implementations
https://coverage.readthedocs.io/

web-poet Documentation, Release 0.17.0

14.10 Item adapters

The testing framework uses the itemadapter library to convert items to dicts when storing them in fixtures and when
comparing the expected and the actual output. As adapters may influence the resulting dicts, it’s important to use the
same adapter when generating and running the tests.

It may also be useful to use different adapters in tests and in production. For example, you may want to omit empty
fields in production, but be able to distinguish between empty and absent fields in tests.

For this you can set the adapter field in the metadata dictionary to the class that inherits from itemadapter.
ItemAdapter and has the adapter(s) you want to use in tests in its ADAPTER_CLASSES attribute (see the relevant
itemadapter docs for more information). An example:

from collections import deque

from itemadapter import ItemAdapter
from itemadapter.adapter import DictAdapter

class MyAdapter(DictAdapter):
any needed customization
...

class MyItemAdapter(ItemAdapter):
ADAPTER_CLASSES = deque([MyAdapter])

You can then put the MyItemAdapter class object into adapter and it will be used by the testing framework.

If adapter is not set, WebPoetTestItemAdapter will be used. It works like itemadapter.ItemAdapter but
doesn’t change behavior when itemadapter.ItemAdapter.ADAPTER_CLASSES is modified.

62 Chapter 14. Tests for page objects

https://github.com/scrapy/itemadapter
https://docs.scrapy.org/en/latest/topics/items.html#itemadapter.ItemAdapter
https://docs.scrapy.org/en/latest/topics/items.html#itemadapter.ItemAdapter
https://github.com/scrapy/itemadapter/#multiple-adapter-classes
https://github.com/scrapy/itemadapter/#multiple-adapter-classes
https://docs.scrapy.org/en/latest/topics/items.html#itemadapter.ItemAdapter

CHAPTER

FIFTEEN

FRAMEWORKS

Page objects are not meant to be used in isolation with web-poet. They are meant to be used with a web-poet framework.

A web-poet framework is a Python web scraping framework, library, or plugin that implements the web-poet specifi-
cation.

At the moment, the only production-ready web-poet framework that exists is scrapy-poet, which brings web-poet sup-
port to Scrapy.

As web-poet matures and sees wider adoption, we hope to see more frameworks add support for it.

63

https://scrapy-poet.readthedocs.io/en/stable/
https://scrapy.org/

web-poet Documentation, Release 0.17.0

64 Chapter 15. Frameworks

CHAPTER

SIXTEEN

FRAMEWORK SPECIFICATION

Learn how to build a web-poet framework.

16.1 Design principles

Page objects should be flexible enough to be used with:

• synchronous or asynchronous code, callback-based and async def / await based,

• single-node and distributed systems,

• different underlying HTTP implementations - or without HTTP support at all, etc.

16.2 Minimum requirements

A web-poet framework must support building a page object given a page object class.

It must be able to build input objects for a page object based on type hints on the page object class, i.e. dependency
injection, and additional input data required by those input objects, such as a target URL or a dictionary of page
parameters.

You can implement dependency injection with the andi library, which handles signature inspection, Optional and
Union annotations, as well as indirect dependencies. For practical examples, see the source code of scrapy-poet and of
the web_poet.example module.

16.3 Additional features

To provide a better experience to your users, consider extending your web-poet framework further to:

• Support as many input classes from the web_poet.page_inputs module as possible.

• Support returning a page object given a target URL and a desired output item class, determining the right page
object class to use based on rules.

• Allow users to request an output item directly, instead of requesting a page object just to call its to_itemmethod.

If you do, consider supporting both synchronous and asynchronous definitions of the to_item method, e.g.
using ensure_awaitable().

• Support additional requests.

• Support retries.

65

https://github.com/scrapinghub/andi
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://github.com/scrapinghub/scrapy-poet

web-poet Documentation, Release 0.17.0

• Let users set their own rules, e.g. to solve conflicts.

66 Chapter 16. Framework specification

CHAPTER

SEVENTEEN

SUPPORTING RULES

Ideally, a framework should support returning the right page object or output item given a target URL and a desired
output item class when rules are used.

To provide basic support for rules in your framework, use the RulesRegistry object at web_poet.
default_registry to choose a page object based on rules:

from web_poet import default_registry

page_cls = default_registry.page_cls_for_item("https://example.com", MyItem)

You should also let your users know what is the best approach to load rules when using your framework. For example,
let them know the best location for their calls to the consume_modules() function.

67

web-poet Documentation, Release 0.17.0

68 Chapter 17. Supporting rules

CHAPTER

EIGHTEEN

SUPPORTING ADDITIONAL REQUESTS

To support additional requests, your framework must provide the request download implementation of HttpClient.

18.1 Providing the Downloader

On its own, HttpClient doesn’t do anything. It doesn’t know how to execute the request on its own. Thus, for
frameworks or projects wanting to use additional requests in Page Objects, they need to set the implementation on how
to execute an HttpRequest.

For more info on this, kindly read the API Specifications for HttpClient.

In any case, frameworks that wish to support web-poet could provide the HTTP downloader implementation in two
ways:

18.1.1 1. Context Variable

contextvars is natively supported in asyncio in order to set and access context-aware values. This means that the
framework using web-poet can assign the request downloader implementation using the contextvars instance named
web_poet.request_downloader_var.

This can be set using:

import attrs
import web_poet
from web_poet import validates_input

async def request_implementation(req: web_poet.HttpRequest) -> web_poet.HttpResponse:
...

def create_http_client():
return web_poet.HttpClient()

@attrs.define
class SomePage(web_poet.WebPage):

http: web_poet.HttpClient

@validates_input
async def to_item(self):

(continues on next page)

69

https://docs.python.org/3/library/contextvars.html#module-contextvars
https://docs.python.org/3/library/asyncio.html#module-asyncio
https://docs.python.org/3/library/contextvars.html#module-contextvars

web-poet Documentation, Release 0.17.0

(continued from previous page)

...

Once this is set, the ``request_implementation`` becomes available to
all instances of HttpClient, unless HttpClient is created with
the ``request_downloader`` argument (see the #2 Dependency Injection
example below).
web_poet.request_downloader_var.set(request_implementation)

Assume that it's constructed with the necessary arguments taken somewhere.
response = web_poet.HttpResponse(...)

page = SomePage(response=response, http=create_http_client())
item = await page.to_item()

When the web_poet.request_downloader_var contextvar is set, HttpClient instances use it by default.

Warning: If no value for web_poet.request_downloader_var is set, then RequestDownloaderVarError is
raised. However, no exception is raised if option 2 below is used.

18.1.2 2. Dependency Injection

The framework using web-poet may be using libraries that don’t have a full support to contextvars (e.g. Twisted).
With that, an alternative approach would be to supply the request downloader implementation when creating an
HttpClient instance:

import attrs
import web_poet
from web_poet import validates_input

async def request_implementation(req: web_poet.HttpRequest) -> web_poet.HttpResponse:
...

def create_http_client():
return web_poet.HttpClient(request_downloader=request_implementation)

@attrs.define
class SomePage(web_poet.WebPage):

http: web_poet.HttpClient

@validates_input
async def to_item(self):

...

Assume that it's constructed with the necessary arguments taken somewhere.
response = web_poet.HttpResponse(...)

page = SomePage(response=response, http=create_http_client())
item = await page.to_item()

70 Chapter 18. Supporting additional requests

https://docs.python.org/3/library/contextvars.html#module-contextvars

web-poet Documentation, Release 0.17.0

From the code sample above, we can see that every time an HttpClient instance is created for Page Objects needing
it, the framework must create HttpClient with a framework-specific request downloader implementation, using
the request_downloader argument.

18.2 Downloader Behavior

The request downloader MUST accept an instance of HttpRequest as the input and return an instance of
HttpResponse. This is important in order to handle and represent generic HTTP operations. The only time that
it won’t be returning HttpResponse would be when it’s raising exceptions (see Exception Handling).

The request downloader MUST resolve Location-based redirections when the HTTP method is not HEAD. In other
words, for non-HEAD requests the returned HttpResponse must be the final response, after all redirects. For HEAD
requests redirects MUST NOT be resolved.

Lastly, the request downloader function MUST support the async/await syntax.

18.3 Exception Handling

Page Object developers could use the exception classes built inside web-poet to handle various ways additional requests
MAY fail. In this section, we’ll see the rationale and ways the framework MUST be able to do that.

18.3.1 Rationale

Frameworks that handle web-poet MUST be able to ensure that Page Objects having additional requests using
HttpClient are able to work with any type of HTTP downloader implementation.

For example, in Python, the common HTTP libraries have different types of base exceptions when something has
occurred:

• aiohttp.ClientError

• requests.RequestException

• urllib.error.HTTPError

Imagine if Page Objects are expected to work in different backend implementations like the ones above, then it would
cause the code to look like:

import urllib

import aiohttp
import attrs
import requests
import web_poet
from web_poet import validates_input

@attrs.define
class SomePage(web_poet.WebPage):

http: web_poet.HttpClient

@validates_input
async def to_item(self):

(continues on next page)

18.2. Downloader Behavior 71

https://docs.aiohttp.org/en/v3.8.1/client_reference.html?highlight=exceptions#aiohttp.ClientError
https://2.python-requests.org/en/master/api/#requests.RequestException
https://docs.python.org/3/library/urllib.error.html#urllib.error.HTTPError

web-poet Documentation, Release 0.17.0

(continued from previous page)

try:
response = await self.http.get("...")

except (aiohttp.ClientError, requests.RequestException, urllib.error.HTTPError):
handle the error here

Such code could turn messy in no time especially when the number of HTTP backends that Page Objects have to support
are steadily increasing. Not to mention the plethora of exception types that HTTP libraries have. This means that Page
Objects aren’t truly portable in different types of frameworks or environments. Rather, they’re only limited to work in
the specific framework they’re supported.

In order for Page Objects to work in different Downloader Implementations, the framework that implements the HTTP
Downloader backend MUST raise exceptions from the web_poet.exceptions.http module in lieu of the backend
specific ones (e.g. aiohttp, requests, urllib, etc.).

This makes the code simpler:

import attrs
import web_poet
from web_poet import validates_input

@attrs.define
class SomePage(web_poet.WebPage):

http: web_poet.HttpClient

@validates_input
async def to_item(self):

try:
response = await self.http.get("...")

except web_poet.exceptions.HttpError:
handle the error here

18.3.2 Expected behavior for Exceptions

All exceptions that the HTTP Downloader Implementation (see Providing the Downloader doc section) explicitly raises
when implementing it for web-poet MUST be web_poet.exceptions.http.HttpError (or a subclass from it).

For frameworks that implement and use web-poet, exceptions that occurred when handling the additional requests
like connection errors, TLS errors, etc MUST be replaced by web_poet.exceptions.http.HttpRequestError
by raising it explicitly.

For responses that are not really errors like in the 100-3xx status code range, exception MUST NOT be raised at
all. For responses with status codes in the 400-5xx range, web-poet raises the web_poet.exceptions.http.
HttpResponseError exception.

From this distinction, the framework MUST NOT raise web_poet.exceptions.http.HttpResponseError on its
own at all, since the HttpClient already handles that.

72 Chapter 18. Supporting additional requests

CHAPTER

NINETEEN

SUPPORTING RETRIES

Web-poet frameworks must catch Retry exceptions raised from the to_item() method of a page object.

When Retry is caught:

1. The original request whose response was fed into the page object must be retried.

2. A new page object must be created, of the same type as the original page object, and with the same input, except
for the response data, which must be the new response.

The to_item() method of the new page object may raise Retry again. Web-poet frameworks must allow multiple
retries of page objects, repeating the Retry-capturing logic.

However, web-poet frameworks are also encouraged to limit the amount of retries per page object. When retries are
exceeded for a given page object, the page object output is ignored. At the moment, web-poet does not enforce any
specific maximum number of retries on web-poet frameworks.

73

web-poet Documentation, Release 0.17.0

74 Chapter 19. Supporting Retries

CHAPTER

TWENTY

SUPPORTING STATS

To support stats, your framework must provide the StatCollector implementation of Stats.

It is up to you to decide how to store the stats, and how your users can access them at run time (outside page objects)
or afterwards.

75

web-poet Documentation, Release 0.17.0

76 Chapter 20. Supporting stats

CHAPTER

TWENTYONE

API REFERENCE

21.1 Page Inputs

class web_poet.page_inputs.browser.BrowserHtml

Bases: SelectableMixin, str

HTML returned by a web browser, i.e. snapshot of the DOM tree in HTML format.

css(query)→ SelectorList
A shortcut to .selector.css().

jmespath(query: str, **kwargs)→ SelectorList
A shortcut to .selector.jmespath().

property selector: Selector

Cached instance of parsel.selector.Selector.

xpath(query, **kwargs)→ SelectorList
A shortcut to .selector.xpath().

class web_poet.page_inputs.browser.BrowserResponse(url: Union[str, _Url], html, *, status:
Optional[int] = None)

Bases: SelectableMixin, UrlShortcutsMixin

Browser response: url, HTML and status code.

url should be browser’s window.location, not a URL of the request, if possible.

html contains the HTML returned by the browser, i.e. a snapshot of DOM tree in HTML format.

The following are optional since it would depend on the source of the BrowserResponse if these are available
or not:

status should represent the int status code of the HTTP response.

url: ResponseUrl

html: BrowserHtml

status: Optional[int]

css(query)→ SelectorList
A shortcut to .selector.css().

jmespath(query: str, **kwargs)→ SelectorList
A shortcut to .selector.jmespath().

77

https://docs.python.org/3/library/stdtypes.html#str
https://parsel.readthedocs.io/en/latest/parsel.html#parsel.selector.SelectorList
https://docs.python.org/3/library/stdtypes.html#str
https://parsel.readthedocs.io/en/latest/parsel.html#parsel.selector.SelectorList
https://parsel.readthedocs.io/en/latest/parsel.html#parsel.selector.Selector
https://parsel.readthedocs.io/en/latest/parsel.html#parsel.selector.Selector
https://parsel.readthedocs.io/en/latest/parsel.html#parsel.selector.SelectorList
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://parsel.readthedocs.io/en/latest/parsel.html#parsel.selector.SelectorList
https://docs.python.org/3/library/stdtypes.html#str
https://parsel.readthedocs.io/en/latest/parsel.html#parsel.selector.SelectorList

web-poet Documentation, Release 0.17.0

property selector: Selector

Cached instance of parsel.selector.Selector.

urljoin(url: Union[str, RequestUrl, ResponseUrl])→ RequestUrl
Return url as an absolute URL.

If url is relative, it is made absolute relative to the base URL of self.

xpath(query, **kwargs)→ SelectorList
A shortcut to .selector.xpath().

class web_poet.page_inputs.client.HttpClient(request_downloader: Optional[Callable] = None, *,
save_responses: bool = False,
return_only_saved_responses: bool = False, responses:
Optional[Iterable[_SavedResponseData]] = None)

Async HTTP client to be used in Page Objects.

See Additional requests for the usage information.

HttpClient doesn’t make HTTP requests on itself. It uses either the request function assigned to the web_poet.
request_downloader_var contextvar, or a function passed via request_downloader argument of the
__init__() method.

Either way, this function should be an async def function which receives an HttpRequest instance, and either
returns a HttpResponse instance, or raises a subclass of HttpError. You can read more in the Providing the
Downloader documentation.

async request(url: Union[str, _Url], *, method: str = 'GET', headers: Optional[Union[Dict[str, str],
HttpRequestHeaders]] = None, body: Optional[Union[bytes, HttpRequestBody]] = None,
allow_status: Optional[Union[str, int, List[Union[str, int]]]] = None)→ HttpResponse

This is a shortcut for creating an HttpRequest instance and executing that request.

HttpRequestError is raised for connection errors, connection and read timeouts, etc.

An HttpResponse instance is returned for successful responses in the 100-3xx status code range.

Otherwise, an exception of type HttpResponseError is raised.

Rasing HttpResponseError can be suppressed for certain status codes using the allow_status param
- it is a list of status code values for which HttpResponse should be returned instead of raising
HttpResponseError.

There is a special “*” allow_status value which allows any status code.

There is no need to include 100-3xx status codes in allow_status, because HttpResponseError is not
raised for them.

async get(url: Union[str, _Url], *, headers: Optional[Union[Dict[str, str], HttpRequestHeaders]] = None,
allow_status: Optional[Union[str, int, List[Union[str, int]]]] = None)→ HttpResponse

Similar to request() but peforming a GET request.

async post(url: Union[str, _Url], *, headers: Optional[Union[Dict[str, str], HttpRequestHeaders]] = None,
body: Optional[Union[bytes, HttpRequestBody]] = None, allow_status: Optional[Union[str,
int, List[Union[str, int]]]] = None)→ HttpResponse

Similar to request() but performing a POST request.

async execute(request: HttpRequest, *, allow_status: Optional[Union[str, int, List[Union[str, int]]]] =
None)→ HttpResponse

Execute the specified HttpRequest instance using the request implementation configured in the
HttpClient instance.

78 Chapter 21. API reference

https://parsel.readthedocs.io/en/latest/parsel.html#parsel.selector.Selector
https://parsel.readthedocs.io/en/latest/parsel.html#parsel.selector.Selector
https://docs.python.org/3/library/stdtypes.html#str
https://parsel.readthedocs.io/en/latest/parsel.html#parsel.selector.SelectorList
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/contextvars.html#module-contextvars
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

web-poet Documentation, Release 0.17.0

HttpRequestError is raised for connection errors, connection and read timeouts, etc.

HttpResponse instance is returned for successful responses in the 100-3xx status code range.

Otherwise, an exception of type HttpResponseError is raised.

Rasing HttpResponseError can be suppressed for certain status codes using the allow_status param
- it is a list of status code values for which HttpResponse should be returned instead of raising
HttpResponseError.

There is a special “*” allow_status value which allows any status code.

There is no need to include 100-3xx status codes in allow_status, because HttpResponseError is not
raised for them.

async batch_execute(*requests: HttpRequest, return_exceptions: bool = False, allow_status:
Optional[Union[str, int, List[Union[str, int]]]] = None)→
List[Union[HttpResponse, HttpResponseError]]

Similar to execute() but accepts a collection of HttpRequest instances that would be batch executed.

The order of the HttpResponses would correspond to the order of HttpRequest passed.

If any of the HttpRequest raises an exception upon execution, the exception is raised.

To prevent this, the actual exception can be returned alongside any successful HttpResponse. This enables
salvaging any usable responses despite any possible failures. This can be done by setting True to the
return_exceptions parameter.

Like execute(), HttpResponseError will be raised for responses with status codes in the 400-5xx
range. The allow_status parameter could be used the same way here to prevent these exceptions from
being raised.

You can omit allow_status="*" if you’re passing return_exceptions=True. However, it would be
returning HttpResponseError instead of HttpResponse.

Lastly, a HttpRequestErrormay be raised on cases like connection errors, connection and read timeouts,
etc.

get_saved_responses()→ Iterable[_SavedResponseData]
Return saved requests and responses.

class web_poet.page_inputs.http.RequestUrl(*args, **kwargs)
Bases: RequestUrl

class web_poet.page_inputs.http.ResponseUrl(*args, **kwargs)
Bases: ResponseUrl

class web_poet.page_inputs.http.HttpRequestBody

Bases: bytes

A container for holding the raw HTTP request body in bytes format.

class web_poet.page_inputs.http.HttpResponseBody

Bases: bytes

A container for holding the raw HTTP response body in bytes format.

bom_encoding()→ Optional[str]
Returns the encoding from the byte order mark if present.

declared_encoding()→ Optional[str]
Return the encoding specified in meta tags in the html body, or None if no suitable encoding was found

21.1. Page Inputs 79

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str

web-poet Documentation, Release 0.17.0

json()→ Any
Deserialize a JSON document to a Python object.

class web_poet.page_inputs.http.HttpRequestHeaders

Bases: _HttpHeaders

A container for holding the HTTP request headers.

It’s able to accept instantiation via an Iterable of Tuples:

>>> pairs = [("Content-Encoding", "gzip"), ("content-length", "648")]
>>> HttpRequestHeaders(pairs)
<HttpRequestHeaders('Content-Encoding': 'gzip', 'content-length': '648')>

It’s also accepts a mapping of key-value pairs as well:

>>> pairs = {"Content-Encoding": "gzip", "content-length": "648"}
>>> headers = HttpRequestHeaders(pairs)
>>> headers
<HttpRequestHeaders('Content-Encoding': 'gzip', 'content-length': '648')>

Note that this also supports case insensitive header-key lookups:

>>> headers.get("content-encoding")
'gzip'
>>> headers.get("Content-Length")
'648'

These are just a few of the functionalities it inherits from multidict.CIMultiDict. For more info on its other
features, read the API spec of multidict.CIMultiDict.

copy()

Return a copy of itself.

classmethod from_bytes_dict(arg: Dict[AnyStr, Union[AnyStr, List, Tuple[AnyStr, ...]]], encoding: str =
'utf-8')→ T_headers

An alternative constructor for instantiation where the header-value pairs could be in raw bytes form.

This supports multiple header values in the form of List[bytes] and Tuple[bytes]] alongside a plain
bytes value. A value in str also works and wouldn’t break the decoding process at all.

By default, it converts the bytes value using “utf-8”. However, this can easily be overridden using the
encoding parameter.

>>> raw_values = {
... b"Content-Encoding": [b"gzip", b"br"],
... b"Content-Type": [b"text/html"],
... b"content-length": b"648",
... }
>>> headers = _HttpHeaders.from_bytes_dict(raw_values)
>>> headers
<_HttpHeaders('Content-Encoding': 'gzip', 'Content-Encoding': 'br', 'Content-
→˓Type': 'text/html', 'content-length': '648')>

classmethod from_name_value_pairs(arg: List[Dict])→ T_headers
An alternative constructor for instantiation using a List[Dict] where the ‘key’ is the header name while
the ‘value’ is the header value.

80 Chapter 21. API reference

https://docs.python.org/3/library/typing.html#typing.Any
https://multidict.aio-libs.org/en/latest/multidict/#multidict.CIMultiDict
https://multidict.aio-libs.org/en/latest/multidict/#multidict.CIMultiDict
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Dict

web-poet Documentation, Release 0.17.0

>>> pairs = [
... {"name": "Content-Encoding", "value": "gzip"},
... {"name": "content-length", "value": "648"}
...]
>>> headers = _HttpHeaders.from_name_value_pairs(pairs)
>>> headers
<_HttpHeaders('Content-Encoding': 'gzip', 'content-length': '648')>

class web_poet.page_inputs.http.HttpResponseHeaders

Bases: _HttpHeaders

A container for holding the HTTP response headers.

It’s able to accept instantiation via an Iterable of Tuples:

>>> pairs = [("Content-Encoding", "gzip"), ("content-length", "648")]
>>> HttpResponseHeaders(pairs)
<HttpResponseHeaders('Content-Encoding': 'gzip', 'content-length': '648')>

It’s also accepts a mapping of key-value pairs as well:

>>> pairs = {"Content-Encoding": "gzip", "content-length": "648"}
>>> headers = HttpResponseHeaders(pairs)
>>> headers
<HttpResponseHeaders('Content-Encoding': 'gzip', 'content-length': '648')>

Note that this also supports case insensitive header-key lookups:

>>> headers.get("content-encoding")
'gzip'
>>> headers.get("Content-Length")
'648'

These are just a few of the functionalities it inherits from multidict.CIMultiDict. For more info on its other
features, read the API spec of multidict.CIMultiDict.

declared_encoding()→ Optional[str]
Return encoding detected from the Content-Type header, or None if encoding is not found

copy()

Return a copy of itself.

classmethod from_bytes_dict(arg: Dict[AnyStr, Union[AnyStr, List, Tuple[AnyStr, ...]]], encoding: str =
'utf-8')→ T_headers

An alternative constructor for instantiation where the header-value pairs could be in raw bytes form.

This supports multiple header values in the form of List[bytes] and Tuple[bytes]] alongside a plain
bytes value. A value in str also works and wouldn’t break the decoding process at all.

By default, it converts the bytes value using “utf-8”. However, this can easily be overridden using the
encoding parameter.

>>> raw_values = {
... b"Content-Encoding": [b"gzip", b"br"],
... b"Content-Type": [b"text/html"],
... b"content-length": b"648",

(continues on next page)

21.1. Page Inputs 81

https://multidict.aio-libs.org/en/latest/multidict/#multidict.CIMultiDict
https://multidict.aio-libs.org/en/latest/multidict/#multidict.CIMultiDict
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str

web-poet Documentation, Release 0.17.0

(continued from previous page)

... }
>>> headers = _HttpHeaders.from_bytes_dict(raw_values)
>>> headers
<_HttpHeaders('Content-Encoding': 'gzip', 'Content-Encoding': 'br', 'Content-
→˓Type': 'text/html', 'content-length': '648')>

classmethod from_name_value_pairs(arg: List[Dict])→ T_headers
An alternative constructor for instantiation using a List[Dict] where the ‘key’ is the header name while
the ‘value’ is the header value.

>>> pairs = [
... {"name": "Content-Encoding", "value": "gzip"},
... {"name": "content-length", "value": "648"}
...]
>>> headers = _HttpHeaders.from_name_value_pairs(pairs)
>>> headers
<_HttpHeaders('Content-Encoding': 'gzip', 'content-length': '648')>

class web_poet.page_inputs.http.HttpRequest(url: Union[str, _Url], *, method: str = 'GET',
headers=_Nothing.NOTHING,
body=_Nothing.NOTHING)

Bases: object

Represents a generic HTTP request used by other functionalities in web-poet like HttpClient.

url: RequestUrl

method: str

headers: HttpRequestHeaders

body: HttpRequestBody

urljoin(url: Union[str, RequestUrl, ResponseUrl])→ RequestUrl
Return url as an absolute URL.

If url is relative, it is made absolute relative to url.

class web_poet.page_inputs.http.HttpResponse(url: Union[str, _Url], body, *, status: Optional[int] =
None, headers=_Nothing.NOTHING, encoding:
Optional[str] = None)

Bases: SelectableMixin, UrlShortcutsMixin

A container for the contents of a response, downloaded directly using an HTTP client.

url should be a URL of the response (after all redirects), not a URL of the request, if possible.

body contains the raw HTTP response body.

The following are optional since it would depend on the source of the HttpResponse if these are available or
not. For example, the responses could simply come off from a local HTML file which doesn’t contain headers
and status.

status should represent the int status code of the HTTP response.

headers should contain the HTTP response headers.

encoding encoding of the response. If None (default), encoding is auto-detected from headers and body content.

82 Chapter 21. API reference

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str

web-poet Documentation, Release 0.17.0

url: ResponseUrl

body: HttpResponseBody

status: Optional[int]

headers: HttpResponseHeaders

property text: str

Content of the HTTP body, converted to unicode using the detected encoding of the response, according to
the web browser rules (respecting Content-Type header, etc.)

property encoding: Optional[str]

Encoding of the response

json()→ Any
Deserialize a JSON document to a Python object.

css(query)→ SelectorList
A shortcut to .selector.css().

jmespath(query: str, **kwargs)→ SelectorList
A shortcut to .selector.jmespath().

property selector: Selector

Cached instance of parsel.selector.Selector.

urljoin(url: Union[str, RequestUrl, ResponseUrl])→ RequestUrl
Return url as an absolute URL.

If url is relative, it is made absolute relative to the base URL of self.

xpath(query, **kwargs)→ SelectorList
A shortcut to .selector.xpath().

web_poet.page_inputs.http.request_fingerprint(req: HttpRequest)→ str
Return the fingerprint of the request.

class web_poet.page_inputs.response.AnyResponse(response: Union[BrowserResponse, HttpResponse])
Bases: SelectableMixin, UrlShortcutsMixin

A container that holds either BrowserResponse or HttpResponse.

response: Union[BrowserResponse, HttpResponse]

property url: ResponseUrl

URL of the response.

property text: str

Text or HTML contents of the response.

property status: Optional[int]

The int status code of the HTTP response, if available.

css(query)→ SelectorList
A shortcut to .selector.css().

jmespath(query: str, **kwargs)→ SelectorList
A shortcut to .selector.jmespath().

21.1. Page Inputs 83

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://parsel.readthedocs.io/en/latest/parsel.html#parsel.selector.SelectorList
https://docs.python.org/3/library/stdtypes.html#str
https://parsel.readthedocs.io/en/latest/parsel.html#parsel.selector.SelectorList
https://parsel.readthedocs.io/en/latest/parsel.html#parsel.selector.Selector
https://parsel.readthedocs.io/en/latest/parsel.html#parsel.selector.Selector
https://docs.python.org/3/library/stdtypes.html#str
https://parsel.readthedocs.io/en/latest/parsel.html#parsel.selector.SelectorList
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://parsel.readthedocs.io/en/latest/parsel.html#parsel.selector.SelectorList
https://docs.python.org/3/library/stdtypes.html#str
https://parsel.readthedocs.io/en/latest/parsel.html#parsel.selector.SelectorList

web-poet Documentation, Release 0.17.0

property selector: Selector

Cached instance of parsel.selector.Selector.

urljoin(url: Union[str, RequestUrl, ResponseUrl])→ RequestUrl
Return url as an absolute URL.

If url is relative, it is made absolute relative to the base URL of self.

xpath(query, **kwargs)→ SelectorList
A shortcut to .selector.xpath().

class web_poet.page_inputs.page_params.PageParams

Bases: dict

Container class that could contain any arbitrary data to be passed into a Page Object.

Note that this is simply a subclass of Python’s dict.

class web_poet.page_inputs.stats.StatCollector

Bases: ABC

Base class for web-poet to implement the storing of data written through Stats.

abstract set(key: str, value: Any)→ None
Set the value of stat key to value.

abstract inc(key: str, value: Union[int, float] = 1)→ None
Increment the value of stat key by value, or set it to value if key has no value.

class web_poet.page_inputs.stats.DummyStatCollector

Bases: StatCollector

StatCollector implementation that does not persist stats. It is used when running automatic tests, where stat
storage is not necessary.

set(key: str, value: Any)→ None
Set the value of stat key to value.

inc(key: str, value: Union[int, float] = 1)→ None
Increment the value of stat key by value, or set it to value if key has no value.

class web_poet.page_inputs.stats.Stats(stat_collector=None)
Bases: object

Page input class to write key-value data pairs during parsing that you can inspect later. See Stats.

Stats can be set to a fixed value or, if numeric, incremented.

Stats are write-only.

Storage and read access of stats depends on the web-poet framework that you are using. Check the documentation
of your web-poet framework to find out if it supports stats, and if so, how to read stored stats.

set(key: str, value: Any)→ None
Set the value of stat key to value.

inc(key: str, value: Union[int, float] = 1)→ None
Increment the value of stat key by value, or set it to value if key has no value.

84 Chapter 21. API reference

https://parsel.readthedocs.io/en/latest/parsel.html#parsel.selector.Selector
https://parsel.readthedocs.io/en/latest/parsel.html#parsel.selector.Selector
https://docs.python.org/3/library/stdtypes.html#str
https://parsel.readthedocs.io/en/latest/parsel.html#parsel.selector.SelectorList
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/abc.html#abc.ABC
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None

web-poet Documentation, Release 0.17.0

21.2 Pages

class web_poet.pages.Injectable

Bases: ABC, FieldsMixin

Base Page Object class, which all Page Objects should inherit from (probably through Injectable subclasses).

Frameworks which are using web-poet Page Objects should use is_injectable() function to detect if an
object is an Injectable, and if an object is injectable, allow building it automatically through dependency injection,
using https://github.com/scrapinghub/andi library.

Instead of inheriting you can also use Injectable.register(MyWebPage). Injectable.register can also
be used as a decorator.

web_poet.pages.is_injectable(cls: Any)→ bool
Return True if cls is a class which inherits from Injectable.

class web_poet.pages.ItemPage

Bases: Extractor[ItemT], Injectable

Base class for page objects.

async to_item()→ ItemT
Extract an item from a web page

class web_poet.pages.WebPage(response: HttpResponse)
Bases: ItemPage[ItemT], ResponseShortcutsMixin

Base Page Object which requires HttpResponse and provides XPath / CSS shortcuts.

response: HttpResponse

property base_url: str

Return the base url of the given response

css(query)→ SelectorList
A shortcut to .selector.css().

property html: str

Shortcut to HTML Response’s content.

property item_cls: type

Item class

jmespath(query: str, **kwargs)→ SelectorList
A shortcut to .selector.jmespath().

property selector: Selector

Cached instance of parsel.selector.Selector.

async to_item()→ ItemT
Extract an item from a web page

property url: str

Shortcut to HTML Response’s URL, as a string.

urljoin(url: str)→ str
Convert url to absolute, taking in account url and baseurl of the response

21.2. Pages 85

https://docs.python.org/3/library/abc.html#abc.ABC
https://github.com/scrapinghub/andi
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://parsel.readthedocs.io/en/latest/parsel.html#parsel.selector.SelectorList
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/stdtypes.html#str
https://parsel.readthedocs.io/en/latest/parsel.html#parsel.selector.SelectorList
https://parsel.readthedocs.io/en/latest/parsel.html#parsel.selector.Selector
https://parsel.readthedocs.io/en/latest/parsel.html#parsel.selector.Selector
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

web-poet Documentation, Release 0.17.0

xpath(query, **kwargs)→ SelectorList
A shortcut to .selector.xpath().

class web_poet.pages.Returns

Bases: Generic[ItemT]

Inherit from this generic mixin to change the item class used by ItemPage

property item_cls: type

Item class

class web_poet.pages.Extractor

Bases: Returns[ItemT], FieldsMixin

Base class for field support.

async to_item()→ ItemT
Extract an item

class web_poet.pages.SelectorExtractor(selector: Selector)
Bases: Extractor[ItemT], SelectorShortcutsMixin

Extractor that takes a parsel.Selector and provides shortcuts for its methods.

21.3 Mixins

class web_poet.mixins.ResponseShortcutsMixin(*args, **kwargs)
Common shortcut methods for working with HTML responses. This mixin could be used with Page Object base
classes.

It requires “response” attribute to be present.

property url: str

Shortcut to HTML Response’s URL, as a string.

property html: str

Shortcut to HTML Response’s content.

property base_url: str

Return the base url of the given response

urljoin(url: str)→ str
Convert url to absolute, taking in account url and baseurl of the response

css(query)→ SelectorList
A shortcut to .selector.css().

jmespath(query: str, **kwargs)→ SelectorList
A shortcut to .selector.jmespath().

property selector: Selector

Cached instance of parsel.selector.Selector.

xpath(query, **kwargs)→ SelectorList
A shortcut to .selector.xpath().

86 Chapter 21. API reference

https://parsel.readthedocs.io/en/latest/parsel.html#parsel.selector.SelectorList
https://docs.python.org/3/library/typing.html#typing.Generic
https://docs.python.org/3/library/functions.html#type
https://parsel.readthedocs.io/en/latest/parsel.html#parsel.selector.Selector
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://parsel.readthedocs.io/en/latest/parsel.html#parsel.selector.SelectorList
https://docs.python.org/3/library/stdtypes.html#str
https://parsel.readthedocs.io/en/latest/parsel.html#parsel.selector.SelectorList
https://parsel.readthedocs.io/en/latest/parsel.html#parsel.selector.Selector
https://parsel.readthedocs.io/en/latest/parsel.html#parsel.selector.Selector
https://parsel.readthedocs.io/en/latest/parsel.html#parsel.selector.SelectorList

web-poet Documentation, Release 0.17.0

21.4 Requests

web_poet.requests.request_downloader_var: ContextVar = <ContextVar
name='request_downloader'>

Frameworks that wants to support additional requests in web-poet should set the appropriate implementation
of request_downloader_var for requesting data.

21.5 Exceptions

21.5.1 Core Exceptions

These exceptions are tied to how web-poet operates.

exception web_poet.exceptions.core.RequestDownloaderVarError

The web_poet.request_downloader_var had its contents accessed but there wasn’t any value set during the
time requests are executed.

See the documentation section about setting up the contextvars to learn more about this.

exception web_poet.exceptions.core.PageObjectAction

Base class for exceptions that can be raised from a page object to indicate something to be done about that page
object.

exception web_poet.exceptions.core.Retry

The page object found that the input data is partial or empty, and a request retry may provide better input.

exception web_poet.exceptions.core.UseFallback

The page object cannot extract data from the input, but the input seems valid, so an alternative data extraction
implementation for the same item type may succeed.

exception web_poet.exceptions.core.NoSavedHttpResponse(msg: Optional[str] = None, request:
Optional[HttpRequest] = None)

Indicates that there is no saved response for this request.

Can only be raised when a HttpClient instance is used to get saved responses.

Parameters
request (HttpRequest) – The HttpRequest instance that was used.

21.5.2 HTTP Exceptions

These are exceptions pertaining to common issues faced when executing HTTP operations.

exception web_poet.exceptions.http.HttpError(msg: Optional[str] = None, request:
Optional[HttpRequest] = None)

Bases: OSError

Indicates that an exception has occurred when handling an HTTP operation.

This is used as a base class for more specific errors and could be vague since it could denote problems either in
the HTTP Request or Response.

For more specific errors, it would be better to use HttpRequestError and HttpResponseError.

21.4. Requests 87

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/exceptions.html#OSError

web-poet Documentation, Release 0.17.0

Parameters
request (HttpRequest) – Request that triggered the exception.

request: Optional[HttpRequest]

Request that triggered the exception.

exception web_poet.exceptions.http.HttpRequestError(msg: Optional[str] = None, request:
Optional[HttpRequest] = None)

Bases: HttpError

Indicates that an exception has occurred when the HTTP Request was being handled.

Parameters
request (HttpRequest) – The HttpRequest instance that was used.

exception web_poet.exceptions.http.HttpResponseError(msg: Optional[str] = None, response:
Optional[HttpResponse] = None, request:
Optional[HttpRequest] = None)

Bases: HttpError

Indicates that an exception has occurred when the HTTP Response was received.

For responses that are in the status code 100-3xx range, this exception shouldn’t be raised at all. However, for
responses in the 400-5xx, this will be raised by web-poet.

Note: Frameworks implementing web-poet should NOT raise this exception.

This exception is raised by web-poet itself, based on allow_status parameter found in the methods of
HttpClient.

Parameters

• request (HttpRequest) – Request that got the response that triggered the exception.

• response (HttpResponse) – Response that triggered the exception.

response: Optional[HttpResponse]

Response that triggered the exception.

21.6 Apply Rules

See Rules for more context about its use cases and some examples.

web_poet.handle_urls(include: Union[str, Iterable[str]], *, overrides: Optional[Type[ItemPage]] = None,
instead_of: Optional[Type[ItemPage]] = None, to_return: Optional[Type] = None,
exclude: Optional[Union[str, Iterable[str]]] = None, priority: int = 500, **kwargs)

Class decorator that indicates that the decorated Page Object should work for the given URL patterns.

The URL patterns are matched using the include and exclude parameters while priority breaks any ties.
See the documentation of the url-matcher package for more information about them.

This decorator is able to derive the item class returned by the Page Object. This is important since it marks what
type of item the Page Object is capable of returning for the given URL patterns. For certain advanced cases, you
can pass a to_return parameter which replaces any derived values (though this isn’t generally recommended).

88 Chapter 21. API reference

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://url-matcher.readthedocs.io/

web-poet Documentation, Release 0.17.0

Passing another Page Object into the instead_of parameter indicates that the decorated Page Object will be
used instead of that for the given set of URL patterns. See Rule precedence.

Any extra parameters are stored as meta information that can be later used.

Parameters

• include – The URLs that should be handled by the decorated Page Object.

• instead_of – The Page Object that should be replaced.

• to_return – The item class holding the data returned by the Page Object. This could be
omitted as it could be derived from the Returns[ItemClass] or ItemPage[ItemClass]
declaration of the Page Object. See Items section.

• exclude – The URLs for which the Page Object should not be applied.

• priority – The resolution priority in case of conflicting rules. A conflict happens when the
include, override, and exclude parameters are the same. If so, the highest priority will
be chosen.

class web_poet.rules.ApplyRule(for_patterns: Union[str, Patterns], *, use: Type[ItemPage], instead_of:
Optional[Type[ItemPage]] = None, to_return: Optional[Type[Any]] =
None, meta: Dict[str, Any] = _Nothing.NOTHING)

A rule that primarily applies Page Object and Item overrides for a given URL pattern.

This is instantiated when using the web_poet.handle_urls() decorator. It’s also being returned as a
List[ApplyRule] when calling the web_poet.default_registry’s get_rules() method.

You can access any of its attributes:

• for_patterns - contains the list of URL patterns associated with this rule. You can read the API docu-
mentation of the url-matcher package for more information about the patterns.

• use - The Page Object that will be used in cases where the URL pattern represented by the for_patterns
attribute is matched.

• instead_of - (optional) The Page Object that will be replaced with the Page Object specified via the use
parameter.

• to_return - (optional) The item class that the Page Object specified in use is capable of returning.

• meta - (optional) Any other information you may want to store. This doesn’t do anything for now but may
be useful for future API updates.

The main functionality of this class lies in the instead_of and to_return parameters. Should both of these
be omitted, then ApplyRule simply tags which URL patterns the given Page Object defined in use is expected
to be used on.

When to_return is not None (e.g. to_return=MyItem), the Page Object in use is declared as capable of
returning a certain item class (i.e. MyItem).

When instead_of is not None (e.g. instead_of=ReplacedPageObject), the rule adds an expectation that
the ReplacedPageObject wouldn’t be used for the URLs matching for_patterns, since the Page Object in
use will replace it.

If there are multiple rules which match a certain URL, the rule to apply is picked based on the priorities set in
for_patterns.

More information regarding its usage in Rules.

Tip: The ApplyRule is also hashable. This makes it easy to store unique rules and identify any duplicates.

21.6. Apply Rules 89

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://url-matcher.readthedocs.io/en/latest/api_reference.html#url_matcher.Patterns
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://url-matcher.readthedocs.io/

web-poet Documentation, Release 0.17.0

class web_poet.rules.RulesRegistry(*, rules: Optional[Iterable[ApplyRule]] = None)
RulesRegistry provides features for storing, retrieving, and searching for the ApplyRule instances.

web-poet provides a default Registry named default_registry for convenience. It can be accessed this way:

from web_poet import handle_urls, default_registry, WebPage
from my_items import Product

@handle_urls("example.com")
class ExampleComProductPage(WebPage[Product]):

...

rules = default_registry.get_rules()

The @handle_urls decorator exposed as web_poet.handle_urls is a shortcut for default_registry.
handle_urls.

Note: It is encouraged to use the web_poet.default_registry instead of creating your own RulesRegistry
instance. Using multiple registries would be unwieldy in most cases.

However, it might be applicable in certain scenarios like storing custom rules to separate it from the
default_registry.

add_rule(rule: ApplyRule)→ None
Registers an web_poet.rules.ApplyRule instance.

classmethod from_override_rules(rules: List[ApplyRule])→ RulesRegistryTV
Deprecated. Use RulesRegistry(rules=...) instead.

get_rules()→ List[ApplyRule]
Return all the ApplyRule that were declared using the @handle_urls decorator.

Note: Remember to consider calling consume_modules() beforehand to recursively import all submod-
ules which contains the @handle_urls decorators from external Page Objects.

get_overrides()→ List[ApplyRule]
Deprecated, use get_rules() instead.

search(**kwargs)→ List[ApplyRule]
Return any ApplyRule from the registry that matches with all the provided attributes.

Sample usage:

rules = registry.search(use=ProductPO, instead_of=GenericPO)
print(len(rules)) # 1
print(rules[0].use) # ProductPO
print(rules[0].instead_of) # GenericPO

search_overrides(**kwargs)→ List[ApplyRule]
Deprecated, use search() instead.

overrides_for(url: Union[_Url, str])→ Mapping[Type[ItemPage], Type[ItemPage]]
Finds all of the page objects associated with the given URL and returns a Mapping where the ‘key’ repre-
sents the page object that is overridden by the page object in ‘value’.

90 Chapter 21. API reference

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.Type

web-poet Documentation, Release 0.17.0

page_cls_for_item(url: Union[_Url, str], item_cls: Type)→ Optional[Type]
Return the page object class associated with the given URL that’s able to produce the given item_cls.

web_poet.rules.consume_modules(*modules: str)→ None
This recursively imports all packages/modules so that the @handle_urls decorators are properly discovered and
imported.

Let’s take a look at an example:

FILE: my_page_obj_project/load_rules.py

from web_poet import default_registry, consume_modules

consume_modules("other_external_pkg.po", "another_pkg.lib")
rules = default_registry.get_rules()

For this case, the ApplyRule are coming from:

• my_page_obj_project (since it’s the same module as the file above)

• other_external_pkg.po

• another_pkg.lib

• any other modules that was imported in the same process inside the packages/modules above.

If the default_registry had other @handle_urls decorators outside of the packages/modules listed above,
then the corresponding ApplyRule won’t be returned. Unless, they were recursively imported in some way
similar to consume_modules().

class web_poet.rules.OverrideRule(*args, **kwargs)

class web_poet.rules.PageObjectRegistry(*args, **kwargs)

21.7 Fields

web_poet.fields is a module with helpers for putting extraction logic into separate Page Object methods / properties.

class web_poet.fields.FieldInfo(name: str, meta: Optional[dict] = None, out: Optional[List[Callable]] =
None)

Information about a field

name: str

name of the field

meta: Optional[dict]

field metadata

out: Optional[List[Callable]]

field processors

class web_poet.fields.FieldsMixin

A mixin which is required for a class to support fields

21.7. Fields 91

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Callable

web-poet Documentation, Release 0.17.0

web_poet.fields.field(method=None, *, cached: bool = False, meta: Optional[dict] = None, out:
Optional[List[Callable]] = None)

Page Object method decorated with @field decorator becomes a property, which is then used by ItemPage’s
to_item() method to populate a corresponding item attribute.

By default, the value is computed on each property access. Use @field(cached=True) to cache the property
value.

The meta parameter allows to store arbitrary information for the field, e.g. @field(meta={"expensive":
True}). This information can be later retrieved for all fields using the get_fields_dict() function.

The out parameter is an optional list of field processors, which are functions applied to the value of the field
before returning it.

web_poet.fields.get_fields_dict(cls_or_instance)→ Dict[str, FieldInfo]
Return a dictionary with information about the fields defined for the class: keys are field names, and values are
web_poet.fields.FieldInfo instances.

async web_poet.fields.item_from_fields(obj, item_cls: ~typing.Type[~web_poet.fields.T] = <class 'dict'>,
*, skip_nonitem_fields: bool = False)→ T

Return an item of item_cls type, with its attributes populated from the obj methods decorated with field
decorator.

If skip_nonitem_fields is True, @fields whose names are not among item_cls field names are not passed
to item_cls.__init__.

When skip_nonitem_fields is False (default), all @fields are passed to item_cls.__init__, possibly
causing exceptions if item_cls.__init__ doesn’t support them.

web_poet.fields.item_from_fields_sync(obj, item_cls: ~typing.Type[~web_poet.fields.T] = <class 'dict'>,
*, skip_nonitem_fields: bool = False)→ T

Synchronous version of item_from_fields().

21.8 typing.Annotated support

class web_poet.annotated.AnnotatedInstance(result: Any, metadata: Tuple[Any, ...])
Wrapper for instances of annotated dependencies.

It is used when both the dependency value and the dependency annotation are needed.

Parameters

• result (Any) – The wrapped dependency instance.

• metadata (Tuple[Any, ...]) – The copy of the annotation.

get_annotated_cls()

Returns a re-created typing.Annotated type.

92 Chapter 21. API reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Any

web-poet Documentation, Release 0.17.0

21.9 Utils

web_poet.utils.get_fq_class_name(cls: type)→ str
Return the fully qualified name for a type.

>>> from web_poet import Injectable
>>> get_fq_class_name(Injectable)
'web_poet.pages.Injectable'
>>> from decimal import Decimal
>>> get_fq_class_name(Decimal)
'decimal.Decimal'

web_poet.utils.memoizemethod_noargs(method: CallableT)→ CallableT
Decorator to cache the result of a method (without arguments) using a weak reference to its object.

It is faster than cached_method(), and doesn’t add new attributes to the instance, but it doesn’t work if objects
are unhashable.

web_poet.utils.cached_method(method: CallableT)→ CallableT
A decorator to cache method or coroutine method results, so that if it’s called multiple times for the same instance,
computation is only done once.

The cache is unbound, but it’s tied to the instance lifetime.

Note: cached_method() is needed because functools.lru_cache() doesn’t work well on methods: self is
used as a cache key, so a reference to an instance is kept in the cache, and this prevents deallocation of instances.

This decorator adds a new private attribute to the instance named
_cached_method_{decorated_method_name}; make sure the class doesn’t define an attribute of the
same name.

web_poet.utils.as_list(value: Optional[Any])→ List[Any]
Normalizes the value input as a list.

>>> as_list(None)
[]
>>> as_list("foo")
['foo']
>>> as_list(123)
[123]
>>> as_list(["foo", "bar", 123])
['foo', 'bar', 123]
>>> as_list(("foo", "bar", 123))
['foo', 'bar', 123]
>>> as_list(range(5))
[0, 1, 2, 3, 4]
>>> def gen():
... yield 1
... yield 2
>>> as_list(gen())
[1, 2]

async web_poet.utils.ensure_awaitable(obj)
Return the value of obj, awaiting it if needed

21.9. Utils 93

https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functools.html#functools.lru_cache
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Any

web-poet Documentation, Release 0.17.0

web_poet.utils.get_generic_param(cls: type, expected: Union[type, Tuple[type, ...]]) → Optional[type]
Search the base classes recursively breadth-first for a generic class and return its param.

Returns the param of the first found class that is a subclass of expected.

21.10 Example framework

The web_poet.example module is a simplified, incomplete example of a web-poet framework, written as support
material for the tutorial.

No part of the web_poet.example module is intended for production use, and it may change in a backward-
incompatible way at any point in the future.

web_poet.example.get_item(url: str, item_cls: Type, *, page_params: Optional[Dict[Any, Any]] = None)→
Any

Returns an item built from the specified URL using a page object class from the default registry.

This function is an example of a minimal, incomplete web-poet framework implementation, intended for use in
the web-poet tutorial.

94 Chapter 21. API reference

https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any

CHAPTER

TWENTYTWO

CONTRIBUTING

web-poet is an open-source project. Your contribution is very welcome!

22.1 Issue Tracker

If you have a bug report, a new feature proposal or simply would like to make a question, please check our issue tracker
on Github: https://github.com/scrapinghub/web-poet/issues

22.2 Source code

Our source code is hosted on Github: https://github.com/scrapinghub/web-poet

Before opening a pull request, it might be worth checking current and previous issues. Some code changes might also
require some discussion before being accepted so it might be worth opening a new issue before implementing huge or
breaking changes.

22.3 Testing

We use tox to run tests with different Python versions:

tox

The command above also runs type checks; we use mypy.

95

https://github.com/scrapinghub/web-poet/issues
https://github.com/scrapinghub/web-poet
https://tox.readthedocs.io

web-poet Documentation, Release 0.17.0

96 Chapter 22. Contributing

CHAPTER

TWENTYTHREE

CHANGELOG

23.1 0.17.0 (2024-03-04)

• Now requires andi >= 0.5.0.

• Package requirements that were unversioned now have minimum versions specified.

• Added support for Python 3.12.

• Added support for typing.Annotated dependencies to the serialization and testing code.

• Documentation improvements.

• CI improvements.

23.2 0.16.0 (2024-01-23)

• Added new AnyResponse which holds either BrowserResponse, or HttpResponse.

• Documentation improvements.

23.3 0.15.1 (2023-11-21)

• HttpRequestHeaders now has a from_bytes_dict class method, like HttpResponseHeaders.

23.4 0.15.0 (2023-09-11)

• A new dependency, Stats, has been added. It allows storing key-value data pairs for different purposes. See
Stats.

97

web-poet Documentation, Release 0.17.0

23.5 0.14.0 (2023-08-03)

• Dropped Python 3.7 support.

• Now requires packaging >= 20.0.

• Fixed detection of the Returns base class.

• Improved docs.

• Updated type hints.

• Updated CI tools.

23.6 0.13.1 (2023-05-30)

• Fixed an issue with HttpClient which happens when a response with a non-standard status code is received.

23.7 0.13.0 (2023-05-30)

• A new dependency BrowserResponse has been added. It contains a browser-rendered page URL, status code
and HTML.

• The Rules documentation section has been rewritten.

23.8 0.12.0 (2023-05-05)

• The testing framework now allows defining a custom item adapter.

• We have made a backward-incompatible change on test fixture serialization: the type_name field of exceptions
has been renamed to import_path.

• Fixed built-in Python types, e.g. int, not working as field processors.

23.9 0.11.0 (2023-04-24)

• JMESPath support is now available: you can use WebPage.jmespath() and HttpResponse.jmespath() to
run queries on JSON responses.

• The testing framework now supports page objects that raise exceptions from the to_item method.

98 Chapter 23. Changelog

https://jmespath.org/

web-poet Documentation, Release 0.17.0

23.10 0.10.0 (2023-04-19)

• New class Extractor can be used for easier extraction of nested fields (see Processors for nested fields).

• Exceptions raised while getting a response for an additional request are now saved in test fixtures.

• Multiple documentation improvements and fixes.

• Add a twine check CI check.

23.11 0.9.0 (2023-03-30)

• Standardized input validation.

• Field processors can now also be defined through a nested Processors class, so that field redefinitions in
subclasses can inherit them. See Default processors.

• Field processors can now opt in to receive the page object whose field is being read.

• web_poet.fields.FieldsMixin now keeps fields from all base classes when using multiple inheritance.

• Fixed the documentation build.

23.12 0.8.1 (2023-03-03)

• Fix the error when calling .to_item(), item_from_fields_sync(), or item_from_fields() on page ob-
jects defined as slotted attrs classes, while setting skip_nonitem_fields=True.

23.13 0.8.0 (2023-02-23)

This release contains many improvements to the web-poet testing framework, as well as some other improvements and
bug fixes.

Backward-incompatible changes:

• cached_method() no longer caches exceptions for async def methods. This makes the behavior the same
for sync and async methods, and also makes it consistent with Python’s stdlib caching (i.e. functools.
lru_cache(), functools.cached_property()).

• The testing framework now uses the HttpResponse-info.json file name instead of HttpResponse-other.
json to store information about HttpResponse instances. To make tests generated with older web-poet work,
rename these files on disk.

Testing framework improvements:

• Improved test reporting: better diffs and error messages.

• By default, the pytest plugin now generates a test per item attribute (see Running tests). There is also an option
(--web-poet-test-per-item) to run a test per item instead.

• Page objects with the HttpClient dependency are now supported (see Additional requests support).

• Page objects with the PageParams dependency are now supported.

• Added a new python -m web_poet.testing rerun command (see Test-Driven Development).

23.10. 0.10.0 (2023-04-19) 99

https://docs.python.org/3/library/functools.html#functools.lru_cache
https://docs.python.org/3/library/functools.html#functools.lru_cache
https://docs.python.org/3/library/functools.html#functools.cached_property

web-poet Documentation, Release 0.17.0

• Fixed support for nested (indirect) dependencies in page objects. Previously they were not handled properly by
the testing framework.

• Non-ASCII output is now stored without escaping in the test fixtures, for better readability.

Other changes:

• Testing and CI fixes.

• Fixed a packaging issue: tests and tests_extra packages were installed, not just web_poet.

23.14 0.7.2 (2023-02-01)

• Restore the minimum version of itemadapter from 0.7.1 to 0.7.0, and prevent a similar issue from happening
again in the future.

23.15 0.7.1 (2023-02-01)

• Updated the tutorial to cover recent features and focus on best practices. Also, a new module was added,
web_poet.example, that allows using page objects while following the tutorial.

• Tests for page objects now covers Git LFS and scrapy-poet, and recommends python -m pytest instead of
pytest.

• Improved the warning message when duplicate ApplyRule objects are found.

• HttpResponse-other.json content is now indented for better readability.

• Improved test coverage for fields.

23.16 0.7.0 (2023-01-18)

• Add a framework for creating tests and running them with pytest.

• Support implementing fields in mixin classes.

• Introduce new methods for web_poet.rules.RulesRegistry:

– web_poet.rules.RulesRegistry.add_rule()

– web_poet.rules.RulesRegistry.overrides_for()

– web_poet.rules.RulesRegistry.page_cls_for_item()

• Improved the performance of web_poet.rules.RulesRegistry.search()where passing a single parameter
of either instead_of or to_return results in O(1) look-up time instead of O(N). Additionally, having either
instead_of or to_return present in multi-parameter search calls would filter the initial candidate results
resulting in a faster search.

• Support page object dependency serialization.

• Add new dependencies used in testing and serialization code: andi, python-dateutil, and time-machine.
Also backports.zoneinfo on non-Windows platforms when the Python version is older than 3.9.

100 Chapter 23. Changelog

web-poet Documentation, Release 0.17.0

23.17 0.6.0 (2022-11-08)

In this release, the @handle_urls decorator gets an overhaul; it’s not required anymore to pass another Page Object
class to @handle_urls("...", overrides=...).

Also, the @web_poet.field decorator gets support for output processing functions, via the out argument.

Full list of changes:

• Backwards incompatible PageObjectRegistry is no longer supporting dict-like access.

• Official support for Python 3.11.

• New @web_poet.field(out=[...]) argument which allows to set output processing functions for web-poet
fields.

• The web_poet.overrides module is deprecated and replaced with web_poet.rules.

• The @handle_urls decorator is now creating ApplyRule instances instead of OverrideRule instances;
OverrideRule is deprecated. ApplyRule is similar to OverrideRule, but has the following differences:

– ApplyRule accepts a to_return parameter, which should be the data container (item) class that the Page
Object returns.

– Passing a string to for_patterns would auto-convert it into url_matcher.Patterns.

– All arguments are now keyword-only except for for_patterns.

• New signature and behavior of handle_urls:

– The overrides parameter is made optional and renamed to instead_of.

– If defined, the item class declared in a subclass of web_poet.ItemPage is used as the to_return param-
eter of ApplyRule.

– Multiple handle_urls annotations are allowed.

• PageObjectRegistry is replaced with RulesRegistry; its API is changed:

– backwards incompatible dict-like API is removed;

– backwards incompatible O(1) lookups using .search(use=PagObject) has become O(N);

– search_overrides method is renamed to search;

– get_overrides method is renamed to get_rules;

– from_override_rules method is deprecated; use RulesRegistry(rules=...) instead.

• Typing improvements.

• Documentation, test, and warning message improvements.

Deprecations:

• The web_poet.overrides module is deprecated. Use web_poet.rules instead.

• The overrides parameter from @handle_urls is now deprecated. Use the instead_of parameter instead.

• The OverrideRule class is now deprecated. Use ApplyRule instead.

• PageObjectRegistry is now deprecated. Use RulesRegistry instead.

• The from_override_rules method of PageObjectRegistry is now deprecated. Use
RulesRegistry(rules=...) instead.

• The PageObjectRegistry.get_overrides method is deprecated. Use PageObjectRegistry.get_rules
instead.

23.17. 0.6.0 (2022-11-08) 101

web-poet Documentation, Release 0.17.0

• The PageObjectRegistry.search_overrides method is deprecated. Use PageObjectRegistry.search
instead.

23.18 0.5.1 (2022-09-23)

• The BOM encoding from the response body is now read before the response headers when deriving the response
encoding.

• Minor typing improvements.

23.19 0.5.0 (2022-09-21)

Web-poet now includes a mini-framework for organizing extraction code as Page Object properties:

import attrs
from web_poet import field, ItemPage

@attrs.define
class MyItem:

foo: str
bar: list[str]

class MyPage(ItemPage[MyItem]):
@field
def foo(self):

return "..."

@field
def bar(self):

return ["...", "..."]

Backwards incompatible changes:

• web_poet.ItemPage is no longer an abstract base class which requires to_item method to be implemented.
Instead, it provides a default async def to_item method implementation which uses fields marked as
web_poet.field to create an item. This change shouldn’t affect the user code in a backwards incompatible
way, but it might affect typing.

Deprecations:

• web_poet.ItemWebPage is deprecated. Use web_poet.WebPage instead.

Other changes:

• web-poet is declared as PEP 561 package which provides typing information; mypy is going to use it by default.

• Documentation, test, typing and CI improvements.

102 Chapter 23. Changelog

web-poet Documentation, Release 0.17.0

23.20 0.4.0 (2022-07-26)

• New HttpResponse.urljoin method, which take page’s base url in account.

• New HttpRequest.urljoin method.

• standardized web_poet.exceptions.Retry exception, which allows to initiate a retry from the Page Object,
e.g. based on page content.

• Documentation improvements.

23.21 0.3.0 (2022-06-14)

• Backwards Incompatible Change:

– web_poet.requests.request_backend_var is renamed to web_poet.requests.
request_downloader_var.

• Documentation and CI improvements.

23.22 0.2.0 (2022-06-10)

• Backward Incompatible Change:

– ResponseData is replaced with HttpResponse.

HttpResponse exposes methods useful for web scraping (such as xpath and css selectors, json load-
ing), and handles web page encoding detection. There are also new types like HttpResponseBody and
HttpResponseHeaders.

• Added support for performing additional requests using web_poet.HttpClient.

• Introduced web_poet.BrowserHtml dependency

• Introduced web_poet.PageParams to pass arbitrary information inside a Page Object.

• Added web_poet.handle_urls decorator, which allows to declare which websites should be handled by the
page objects. Lower-level PageObjectRegistry class is also available.

• removed support for Python 3.6

• added support for Python 3.10

23.23 0.1.1 (2021-06-02)

• base_url and urljoin shortcuts

23.20. 0.4.0 (2022-07-26) 103

web-poet Documentation, Release 0.17.0

23.24 0.1.0 (2020-07-18)

• Documentation

• WebPage, ItemPage, ItemWebPage, Injectable and ResponseData are available as top-level imports (e.g.
web_poet.ItemPage)

23.25 0.0.1 (2020-04-27)

Initial release.

104 Chapter 23. Changelog

CHAPTER

TWENTYFOUR

LICENSE

Copyright (c) Zyte Group Ltd All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the fol-
lowing conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the name of Zyte nor the names of its contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCI-
DENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

105

web-poet Documentation, Release 0.17.0

106 Chapter 24. License

PYTHON MODULE INDEX

w
web_poet.annotated, 92
web_poet.example, 94
web_poet.exceptions.core, 87
web_poet.exceptions.http, 87
web_poet.fields, 91
web_poet.mixins, 86
web_poet.page_inputs, 77
web_poet.page_inputs.browser, 77
web_poet.page_inputs.client, 78
web_poet.page_inputs.http, 79
web_poet.page_inputs.page_params, 84
web_poet.page_inputs.response, 83
web_poet.page_inputs.stats, 84
web_poet.pages, 85
web_poet.requests, 87
web_poet.rules, 89
web_poet.utils, 93

107

web-poet Documentation, Release 0.17.0

108 Python Module Index

INDEX

A
add_rule() (web_poet.rules.RulesRegistry method), 90
AnnotatedInstance (class in web_poet.annotated), 92
AnyResponse (class in web_poet.page_inputs.response),

83
ApplyRule (class in web_poet.rules), 89
as_list() (in module web_poet.utils), 93

B
base_url (web_poet.mixins.ResponseShortcutsMixin

property), 86
base_url (web_poet.pages.WebPage property), 85
batch_execute() (web_poet.page_inputs.client.HttpClient

method), 79
body (web_poet.page_inputs.http.HttpRequest attribute),

82
body (web_poet.page_inputs.http.HttpResponse at-

tribute), 83
bom_encoding() (web_poet.page_inputs.http.HttpResponseBody

method), 79
BrowserHtml (class in web_poet.page_inputs.browser),

77
BrowserResponse (class in

web_poet.page_inputs.browser), 77

C
cached_method() (in module web_poet.utils), 93
consume_modules() (in module web_poet.rules), 91
copy() (web_poet.page_inputs.http.HttpRequestHeaders

method), 80
copy() (web_poet.page_inputs.http.HttpResponseHeaders

method), 81
css() (web_poet.mixins.ResponseShortcutsMixin

method), 86
css() (web_poet.page_inputs.browser.BrowserHtml

method), 77
css() (web_poet.page_inputs.browser.BrowserResponse

method), 77
css() (web_poet.page_inputs.http.HttpResponse

method), 83
css() (web_poet.page_inputs.response.AnyResponse

method), 83

css() (web_poet.pages.WebPage method), 85

D
declared_encoding()

(web_poet.page_inputs.http.HttpResponseBody
method), 79

declared_encoding()
(web_poet.page_inputs.http.HttpResponseHeaders
method), 81

DummyStatCollector (class in
web_poet.page_inputs.stats), 84

E
encoding (web_poet.page_inputs.http.HttpResponse

property), 83
ensure_awaitable() (in module web_poet.utils), 93
execute() (web_poet.page_inputs.client.HttpClient

method), 78
Extractor (class in web_poet.pages), 86

F
field() (in module web_poet.fields), 91
FieldInfo (class in web_poet.fields), 91
FieldsMixin (class in web_poet.fields), 91
from_bytes_dict() (web_poet.page_inputs.http.HttpRequestHeaders

class method), 80
from_bytes_dict() (web_poet.page_inputs.http.HttpResponseHeaders

class method), 81
from_name_value_pairs()

(web_poet.page_inputs.http.HttpRequestHeaders
class method), 80

from_name_value_pairs()
(web_poet.page_inputs.http.HttpResponseHeaders
class method), 82

from_override_rules()
(web_poet.rules.RulesRegistry class method),
90

G
get() (web_poet.page_inputs.client.HttpClient method),

78

109

web-poet Documentation, Release 0.17.0

get_annotated_cls()
(web_poet.annotated.AnnotatedInstance
method), 92

get_fields_dict() (in module web_poet.fields), 92
get_fq_class_name() (in module web_poet.utils), 93
get_generic_param() (in module web_poet.utils), 94
get_item() (in module web_poet.example), 94
get_overrides() (web_poet.rules.RulesRegistry

method), 90
get_rules() (web_poet.rules.RulesRegistry method),

90
get_saved_responses()

(web_poet.page_inputs.client.HttpClient
method), 79

H
handle_urls() (in module web_poet), 88
headers (web_poet.page_inputs.http.HttpRequest

attribute), 82
headers (web_poet.page_inputs.http.HttpResponse at-

tribute), 83
html (web_poet.mixins.ResponseShortcutsMixin prop-

erty), 86
html (web_poet.page_inputs.browser.BrowserResponse

attribute), 77
html (web_poet.pages.WebPage property), 85
HttpClient (class in web_poet.page_inputs.client), 78
HttpError, 87
HttpRequest (class in web_poet.page_inputs.http), 82
HttpRequestBody (class in web_poet.page_inputs.http),

79
HttpRequestError, 88
HttpRequestHeaders (class in

web_poet.page_inputs.http), 80
HttpResponse (class in web_poet.page_inputs.http), 82
HttpResponseBody (class in

web_poet.page_inputs.http), 79
HttpResponseError, 88
HttpResponseHeaders (class in

web_poet.page_inputs.http), 81

I
inc() (web_poet.page_inputs.stats.DummyStatCollector

method), 84
inc() (web_poet.page_inputs.stats.StatCollector

method), 84
inc() (web_poet.page_inputs.stats.Stats method), 84
Injectable (class in web_poet.pages), 85
is_injectable() (in module web_poet.pages), 85
item_cls (web_poet.pages.Returns property), 86
item_cls (web_poet.pages.WebPage property), 85
item_from_fields() (in module web_poet.fields), 92
item_from_fields_sync() (in module

web_poet.fields), 92

ItemPage (class in web_poet.pages), 85

J
jmespath() (web_poet.mixins.ResponseShortcutsMixin

method), 86
jmespath() (web_poet.page_inputs.browser.BrowserHtml

method), 77
jmespath() (web_poet.page_inputs.browser.BrowserResponse

method), 77
jmespath() (web_poet.page_inputs.http.HttpResponse

method), 83
jmespath() (web_poet.page_inputs.response.AnyResponse

method), 83
jmespath() (web_poet.pages.WebPage method), 85
json() (web_poet.page_inputs.http.HttpResponse

method), 83
json() (web_poet.page_inputs.http.HttpResponseBody

method), 79

M
memoizemethod_noargs() (in module web_poet.utils),

93
meta (web_poet.fields.FieldInfo attribute), 91
method (web_poet.page_inputs.http.HttpRequest at-

tribute), 82
module

web_poet.annotated, 92
web_poet.example, 94
web_poet.exceptions.core, 87
web_poet.exceptions.http, 87
web_poet.fields, 91
web_poet.mixins, 86
web_poet.page_inputs, 77
web_poet.page_inputs.browser, 77
web_poet.page_inputs.client, 78
web_poet.page_inputs.http, 79
web_poet.page_inputs.page_params, 84
web_poet.page_inputs.response, 83
web_poet.page_inputs.stats, 84
web_poet.pages, 85
web_poet.requests, 87
web_poet.rules, 89
web_poet.utils, 93

N
name (web_poet.fields.FieldInfo attribute), 91
NoSavedHttpResponse, 87

O
out (web_poet.fields.FieldInfo attribute), 91
OverrideRule (class in web_poet.rules), 91
overrides_for() (web_poet.rules.RulesRegistry

method), 90

110 Index

web-poet Documentation, Release 0.17.0

P
page_cls_for_item() (web_poet.rules.RulesRegistry

method), 90
PageObjectAction, 50, 87
PageObjectRegistry (class in web_poet.rules), 91
PageParams (class in web_poet.page_inputs.page_params),

84
post() (web_poet.page_inputs.client.HttpClient

method), 78

R
request (web_poet.exceptions.http.HttpError attribute),

88
request() (web_poet.page_inputs.client.HttpClient

method), 78
request_downloader_var (in module

web_poet.requests), 87
request_fingerprint() (in module

web_poet.page_inputs.http), 83
RequestDownloaderVarError, 87
RequestUrl (class in web_poet.page_inputs.http), 79
response (web_poet.exceptions.http.HttpResponseError

attribute), 88
response (web_poet.page_inputs.response.AnyResponse

attribute), 83
response (web_poet.pages.WebPage attribute), 85
ResponseShortcutsMixin (class in web_poet.mixins),

86
ResponseUrl (class in web_poet.page_inputs.http), 79
Retry, 50, 87
Returns (class in web_poet.pages), 86
RulesRegistry (class in web_poet.rules), 89

S
search() (web_poet.rules.RulesRegistry method), 90
search_overrides() (web_poet.rules.RulesRegistry

method), 90
selector (web_poet.mixins.ResponseShortcutsMixin

property), 86
selector (web_poet.page_inputs.browser.BrowserHtml

property), 77
selector (web_poet.page_inputs.browser.BrowserResponse

property), 77
selector (web_poet.page_inputs.http.HttpResponse

property), 83
selector (web_poet.page_inputs.response.AnyResponse

property), 83
selector (web_poet.pages.WebPage property), 85
SelectorExtractor (class in web_poet.pages), 86
set() (web_poet.page_inputs.stats.DummyStatCollector

method), 84
set() (web_poet.page_inputs.stats.StatCollector

method), 84

set() (web_poet.page_inputs.stats.Stats method), 84
StatCollector (class in web_poet.page_inputs.stats),

84
Stats (class in web_poet.page_inputs.stats), 84
status (web_poet.page_inputs.browser.BrowserResponse

attribute), 77
status (web_poet.page_inputs.http.HttpResponse

attribute), 83
status (web_poet.page_inputs.response.AnyResponse

property), 83

T
text (web_poet.page_inputs.http.HttpResponse prop-

erty), 83
text (web_poet.page_inputs.response.AnyResponse

property), 83
to_item() (web_poet.pages.Extractor method), 86
to_item() (web_poet.pages.ItemPage method), 85
to_item() (web_poet.pages.WebPage method), 85

U
url (web_poet.mixins.ResponseShortcutsMixin prop-

erty), 86
url (web_poet.page_inputs.browser.BrowserResponse at-

tribute), 77
url (web_poet.page_inputs.http.HttpRequest attribute),

82
url (web_poet.page_inputs.http.HttpResponse attribute),

82
url (web_poet.page_inputs.response.AnyResponse prop-

erty), 83
url (web_poet.pages.WebPage property), 85
urljoin() (web_poet.mixins.ResponseShortcutsMixin

method), 86
urljoin() (web_poet.page_inputs.browser.BrowserResponse

method), 78
urljoin() (web_poet.page_inputs.http.HttpRequest

method), 82
urljoin() (web_poet.page_inputs.http.HttpResponse

method), 83
urljoin() (web_poet.page_inputs.response.AnyResponse

method), 84
urljoin() (web_poet.pages.WebPage method), 85
UseFallback, 50, 87

W
web_poet.annotated

module, 92
web_poet.example

module, 94
web_poet.exceptions.core

module, 87
web_poet.exceptions.http

module, 87

Index 111

web-poet Documentation, Release 0.17.0

web_poet.fields
module, 91

web_poet.mixins
module, 86

web_poet.page_inputs
module, 77

web_poet.page_inputs.browser
module, 77

web_poet.page_inputs.client
module, 78

web_poet.page_inputs.http
module, 79

web_poet.page_inputs.page_params
module, 84

web_poet.page_inputs.response
module, 83

web_poet.page_inputs.stats
module, 84

web_poet.pages
module, 85

web_poet.requests
module, 87

web_poet.rules
module, 89

web_poet.utils
module, 93

WebPage (class in web_poet.pages), 85

X
xpath() (web_poet.mixins.ResponseShortcutsMixin

method), 86
xpath() (web_poet.page_inputs.browser.BrowserHtml

method), 77
xpath() (web_poet.page_inputs.browser.BrowserResponse

method), 78
xpath() (web_poet.page_inputs.http.HttpResponse

method), 83
xpath() (web_poet.page_inputs.response.AnyResponse

method), 84
xpath() (web_poet.pages.WebPage method), 85

112 Index

	Overview
	Installation
	Tutorial
	Create a project directory
	Create an item class
	Create a page object class
	Use your page object class
	Extend and override your code
	Use additional requests
	Use parameters

	From the ground up
	Writing reusable parsing code
	Parsing with web-poet
	Downloading with web-poet

	Page objects
	Defining a page object class
	Minimizing boilerplate

	Getting the output item
	Getting a page object
	Building a page object manually

	Inputs
	Built-in input classes
	Working with HttpResponse
	Custom input classes

	Items
	Defining the item class of a page object class
	Best practices for item classes

	Rules
	Defining rules
	URL patterns
	Rule precedence

	Rule registries
	Loading rules

	Rule conflicts

	Fields
	Synchronous and asynchronous fields
	Inheritance
	Reimplementing a field
	Adding a field
	Removing a field
	Renaming a field

	Composition
	Using a page object as input
	Field mixins

	Field processors
	Accessing other fields from field processors
	Default processors
	Processors for nested fields

	Field caching
	cached_method vs lru_cache vs cached_property
	Exception caching

	Field metadata
	Input validation

	Additional requests
	Making a request
	Concurrent requests
	Error handling
	Retrying additional requests

	Input validation
	Input Validation Exceptions

	Using page params
	Example: Controlling item values
	Example: Controlling page object behavior

	Stats
	Tests for page objects
	Serialization
	Fixtures
	scrapy-poet integration
	Running tests
	Test-Driven Development
	Handling time fields
	Storing fixtures in Git
	Additional requests support
	Test coverage
	Item adapters

	Frameworks
	Framework specification
	Design principles
	Minimum requirements
	Additional features

	Supporting rules
	Supporting additional requests
	Providing the Downloader
	1. Context Variable
	2. Dependency Injection

	Downloader Behavior
	Exception Handling
	Rationale
	Expected behavior for Exceptions

	Supporting Retries
	Supporting stats
	API reference
	Page Inputs
	Pages
	Mixins
	Requests
	Exceptions
	Core Exceptions
	HTTP Exceptions

	Apply Rules
	Fields
	typing.Annotated support
	Utils
	Example framework

	Contributing
	Issue Tracker
	Source code
	Testing

	Changelog
	0.17.0 (2024-03-04)
	0.16.0 (2024-01-23)
	0.15.1 (2023-11-21)
	0.15.0 (2023-09-11)
	0.14.0 (2023-08-03)
	0.13.1 (2023-05-30)
	0.13.0 (2023-05-30)
	0.12.0 (2023-05-05)
	0.11.0 (2023-04-24)
	0.10.0 (2023-04-19)
	0.9.0 (2023-03-30)
	0.8.1 (2023-03-03)
	0.8.0 (2023-02-23)
	0.7.2 (2023-02-01)
	0.7.1 (2023-02-01)
	0.7.0 (2023-01-18)
	0.6.0 (2022-11-08)
	0.5.1 (2022-09-23)
	0.5.0 (2022-09-21)
	0.4.0 (2022-07-26)
	0.3.0 (2022-06-14)
	0.2.0 (2022-06-10)
	0.1.1 (2021-06-02)
	0.1.0 (2020-07-18)
	0.0.1 (2020-04-27)

	License
	Python Module Index
	Index

